
www.manaraa.com

I

New Leader Election Algorithms

in Hypercube Networks

Prepared by

Mohammed N. S. Alrefai

Supervisor

 Prof. Naim Ajlouni

A dissertation submitted in partial fulfillment of

the requirements for the Degree of Doctor of

Philosophy in Computer Science.

Graduate College of Computer Studies

Amman Arab University for Graduate Studies

December, 2006

www.manaraa.com

II

Authorization of Dissemination

www.manaraa.com

III

Resolution of the Examining Committee

www.manaraa.com

IV

Acknowledgment

"All praises and thanks to ALLAH"

 I would like to thank my supervisor Dr. Naim Ajlouni who

encouraged and helped me very much to produce this work. I also

thank all my colleagues and relatives for providing me support

throughout and encouraging me always to give my best.

 My special thanks to my wife who kept close to me all the time,

and my parents for their praying and providing supports.

 Finally, I would like to thank all lecturers, administration, and staff

of Amman Arab University for Graduate Studies for their help and

support.

www.manaraa.com

V

Dedication

I dedicate this work to

My Parents, Wife, Son, Brothers, Sisters, and Friends

www.manaraa.com

VI

Table of Contents

Authorization of Dissemination .. II

Resolution of the Examining Committee .. III

Acknowledgment………….. IV

Dedication…………. ... V

Table of Contents…………….. .. VI

List of Tables………. ... IX

List of Figures……….. .. X

List of Appendices ... XI

Abstract .. XII

Arabic summary .. XIV

CHAPTER ONE INTRODUCTION ... 1

1.1.Overview .. 1

1.2.Problem Statement ... 3

1.3 .Goals of this Dissertation ... 3

1.4.Dissertation Contributions ... 4

1.5.Dissertation Structure .. 4

CHAPTER TWO INTRODUCTION TO PARALLEL AND

DISTRIBUTED SYSTEMS ... 6

2.1. Introduction. .. 6

2.2 Distributed Systems and Parallel Computers 7

2.2.1Advantages of Distributed Systems over Centralized Systems......... 7

2.2.2 Disadvantages of Distributed Systems. .. 8

2.2.3.Hardware Concepts: .. 9

2.2.4.Software Concepts. ... 11

2.2.4.1 Network Operating System. .. 11

2.2.4.2 True Distributed Systems. ... 12

2.2.4.3 Multiprocessor Timesharing Systems. .. 12

2.2.5 Design Issues. ... 13

2.2.5.1 Transparency. ... 13

2.2.5.2 Flexibility. .. 14

2.2.5.3 Reliability. ... 14

2.2.5.4 Performance. .. 15

2.2.5.5 Scalability. ... 15

2.3.Interconnection Networks .. 15

2.3.1 Direct Networks: ... 16

2.3.1.1 Direct Networks Types. ... 17

2.3.1.1.1 Completely Connected Networks. .. 17

www.manaraa.com

VII

2.3.1.1.2 Star Connected Networks. .. 17

2.3.1.1.3Linear and Ring Arrays. .. 18

2.3.1.1.4Tree Networks. .. 18

2.3.1.1.5 Mesh networks. ... 19

2.3.1.1.6. Torus (Wraparound) Networks. ... 20

2.3.1.1.7 Hypercube Networks. ... 20

2.3.1.1.8 Direct Networks Evaluation. .. 21

2.3.2. Indirect Networks. ... 22

2.3.3. Shared-Medium Networks. .. 24

2.3.4. Hybrid Networks. .. 24

2.4. Routing Mechanism for Direct Networks. 25

2.4.1. Routing Mechanism Classifications. ... 25

2.4. 2.outing Types. ... 26

2.4.3 Problems in Routing Mechanisms. ... 27

2.5..Algorithms Design and Analysis .. 28

2.5.1.Complexity and Order Analysis ... 28

2.5.2. Order Analysis of Functions. ... 29

2.5.3. Worst-Case, Best-Case, and Average-Case Efficiencies. 30

2.6 Model Description and Properties ... 31

2.6.1 Introduction ... 31

2.6.2 Model Description .. 31

2.6.3 Model Properties. .. 32

2.6.4 Research Assumptions. ... 33

2.7 Conclusion. .. 34

CHAPTER THREE LITERATURE REVIEW 35

3.1 Introduction. ... 35

3.2 Related Works ... 36

3.3 Conclusion. .. 47

CHAPTER FOUR NEW LEADER ELECTION ALGORITHMS

IN………………………. ... 48

HYPERCUBE NETWORKS ... 48

4.1 Introduction .. 48

4.2 Proposed Leader Election Algorithm in Hypercube. 48

4.2.1 Algorithm Description .. 49

4.2.2 Examples ... 52

4.2.3 Abstract Algorithm ... 56

4.3 Proposed Leader Election Algorithm in Hypercube with the Presence

of One Link Failure: .. 59

4.3.1 Algorithm Description .. 59

4.3.2 Abstract Algorithm ... 64

4.4 Conclusion. .. 69

www.manaraa.com

VIII

CHAPTER FIVE PERFORMANCE EVALUATION AND

SIMULATION………. .. 70

5.1 Introduction .. 70

5.2 Analyses. .. 70

5.2.1 New Leader Election Algorithm in Hypercube Networks 70

5.2.1.1 Simple Case. .. 71

5.2.1.2 Worst Case: .. 74

5.2.1.3 Contention Free. .. 77

5.2.1.4 Comparison with Previous Algorithms. 78

5.2.2. Leader Election Algorithm in Hypercube Network with the

Presence of One Link Failure .. 79

5.2.2.1 Simple Case: .. 79

5.2.2.2.Worst Case: .. 83

5.3. Simulation ... 87

5.3.1 Programming Language _ Visual Basic 6 (VB6). 87

5.3.2 Leader Election in Hypercube Simulation 87

5.3.2.1 Introduction to Simulator. .. 88

5.3.2.2. Examples. .. 90

5.3.2.3 Simulation Survey: .. 105

5.4 Conclusion. .. 108

CHAPTER SIX CONCLUSIONS AND FUTURE WORKS ... 109

6.1 Introduction. ... 109

6.2 Results. ... 109

6.2.1 Results of the First Algorithm. ... 109

6.2.2 Results of the Second Algorithm. ... 110

6.4 Simulation Results. .. 111

6.5 Comparison between the Proposed Algorithm and Previous

Works………. .. 112

6.6 Future Works. .. 113

References……………… .. 114

APPENDICES………….. .. 120

www.manaraa.com

IX

List of Tables

Table

Number

Table Address Page

numbe

r

1 Comparison between proposed and previous

algorithms

83

2 Messages in details for example one 98

2 Step 0 in example 2 101

4 Step 1 in example 2 102

5 Step 2 in example 2 103

6 Step 3 in example 2 104

7 Step 4 in example 2 105

8 Step 5 in example 2 105

9 Step 6 in example 2 106

10 Step 7 in example 2 107

11 Step 8 in example 2 107

12 Step 9 in example 2 108

13 Step 10 in example 2 109

14 Simulation inputs and results for different states when N =

16

111

15 Simulation inputs and results for different states when N =

1024

112

16 Comparison between proposed and previous

algorithms

119

www.manaraa.com

X

List of Figures

Figure

Number

Figure Address Page

numbe

r

1 Parallel and Distributed Systems 12

2 Multiprocessors design 13

2 Multicomputers design 13

4 Complete Network 18

5 Star Network 19

6 Ring and Linear Arrays 19

7 Tree Network 20

8 2D and 2D meshes 21

9 2D Torus Network 21

10 Hypercube Network 22

11 Bus Based Network 24

12 Crossbar switching network 24

12 Omega Interconnection Network 25

14 2D Hypercube Network 34

15 Phase One messages in Example One 55

16 Phase Two messages in Example 1 56

17 Phase Three messages in Example 1 57

18 Phase One messages in example two 58

19 The First Screen in the Simulation 93

20 Simulation Main Screen 94

21 Input the Number of Processes Dialog Box 96

22 Input the Number of Processes Detect Failure 96

23 Relationship between number of nodes detect failure and

number of messages

113

24 First Algorithm Flowchart 148

25 Second Algorithm Flowchart 149

www.manaraa.com

XI

List of Appendices

Appendix

Number

Appendix Address Page

numbe

r

1 Codes of the Simulation Program 130

2 Step 10 Messages when hypercube size = 2048 139

3 Proposed Algorithms Flowcharts 148

www.manaraa.com

XII

New Leader Election Algorithms in Hypercube
Networks

Prepared by
Mohammed N. S. Alrefai

Supervisor

 Prof. Dr. Naim Ajlouni

Abstract

 Leader Election is a fundamental problem in centralized control of

distributed systems. The election process starts when one or more

processors discover that the leader has failed, and it terminates when

the remaining processors are aware who the new leader is.

 This Dissertation presents two new algorithms in distributed

systems to solve this problem in Hypercube networks. The first

algorithm presents a new solution to leader failure problem with least

number of messages and time steps. The second algorithm provides

a new solution to solve leader failure problem with the presence of

one link failure.

 Distributed leader election algorithms performance is evaluated

in this dissertation by mathematical proof and simulation program for

the first algorithm was made. Contention and synchronization issues

are considered in both algorithms.

www.manaraa.com

XIII

 In a network of N nodes connected by a hypercube network, the

first algorithm uses O(N) messages to elect a new leader in O(log(N))

time steps when the leader failure is detected by one processor in

the simple case. In the worst case, when the failure is detected by

more than one processor reached to N-1, the first algorithm uses O(N

Log(N)) messages to elect a new leader in O(log(N)) time steps.

 For the second algorithm, it uses O(N) messages to elect a

new leader in O(log(N)) time steps in the simple case and O(N Log

(N)) messages in O(log(N)) time steps in the worst case.

www.manaraa.com

XIV

Arabic summary

www.manaraa.com

XV

www.manaraa.com

1

CHAPTER ONE

INTRODUCTION

1.1. Overview

 One of the most fundamental problems in distributed systems is the leader

failure. This problem can be solved by Leader Election Algorithms (LEAs) (Shrira

and Goldreich, 1987). These algorithms move the system from an initial state,

where all the nodes are in the same computation state, into a new state where

only one node is distinguished computationally called leader (Dolev et al, 1997).

 Distributed systems are used to increase the computational speed of

problem solving. These systems use a number of computers which cooperate

with each other to execute some task (Tanenbaum, 2002). The control of

distributed algorithms requires one node to act as a controller (leader). If the

leader crashes or fails for any reason a new leader should be elected. The LEA's

solves this problem by substituting the failed leader by a new leader.

 The election process is a program distributed over all nodes, it starts when

the leader failure discovered by one node at simple case, or by more than one,

until all nodes except the failed one in the worst case. It terminates when all nodes

know who's the new leader (Flocchini and Mans,1996).

 The LEAs are widely used in centralized systems to solve single point failure

problem. For example, in client-server, LEAs are used when the server fails and

www.manaraa.com

2

the system needs to transfer the leadership to another station (Larrea et al,

2000). The LEAs are also used in token ring. When the node has the token fails,

the system should select a new node to have the token.

 In distributed and parallel systems, there are many network topologies like

hypercube, meshes, ring, bus,…etc. These topologies may be either hardware

processors, or software processes embeded over the other hardware topology.

The hypercube model has many properties that make it one of the most important

topologies in distributed and parallel systems, the short diametar, nodes

addressing, optimal routing path from initiater to the destination and its symmetry

and regularity are some of these properties (Castorino and Ciccarella,

1999;Kumar et al, 2003; Flocchini and Mans,1996; Gerard ,1993; Singh,1997).

 This dissertation will focus on the hypercube nodes topology where one

node works as leader and the others as defeated. We propose two algorithms

for leader election to solve leader failure. The first one solve the leader failure in

hypercube with less time steps and less number of messages. The second

algorithm solve a more complicated problem when the system has one link failure

as well as a leader failure. Both algorithms will be executed without user

intervention.

 This research is based on mathematical method to find the number of

messages and the number of time steps . It will use simulation to validate the

results for the first algorithm.

www.manaraa.com

3

1.2.Problem Statement

 The current leader election algorithms for the hypercube suffer from

inefficient performance caused by the high number of messages and time steps

(Dobrev and Ruzicka, 1997; Flocchini and Mans,1996; Gerard ,1993; Castorino

and Ciccarella, 1999). Also current algorithms do not solve the problem of link

failure during the leader election algorithm process. This research is aimed at

presenting two new algorithms; the first deals with the leader failure problem in

hypercube with minimum time steps and minimum number of messages, which

will enhance the algorithm performance. The second algorithm presents a

solution for the leader election with the presence of one link failure.

1.3 .Goals of this Dissertation

 This dissertation proposed two algorithms, which solve the leader failure

problem in hypercube. The new algorithms will have the following objectives:

1- More efficient than the previous algorithms.

2- Less contention and light load over the network.

3- Require least time steps and number of messages.

4- Better synchronization between different steps during the execution of the

algorithm.

5- Use asynchronous communication in transfer of messages.

6- Shorter length of messages.

7- Solve the problem with the presence of link failure.

www.manaraa.com

4

1.4.Dissertation Contributions

The contributions of this dissertation are summarized in presenting two new

algorithms for leader election in hypercube. The first one solves the problem of

leader crash by using less number of messages and time steps. The second

algorithm considers the probability of one link failure occurring during the

execution of the leader election process in hypercube.

1.5.Dissertation Structure

 This dissertation is organized as follows:

 Chapter One: presents introduction to dissertation subject, election

algorithms, problem statement, goals of the dissertation and dissertation

contributions.

 Chapter Two: provides some parallel and distributed information related

to dissertation, distributed systems, multicomputers, multiprocessors,

interconnection network, design issues, Performance and complexity and

finally the description and properties of the hypercube model.

 Chapter Three: presents the previous work in election algorithms

problem.

 Chapter Four: contains the two election algorithms that represent

dissertation work.

 Chapter Five: deals with the analyses of the research algorithms. It

presents mathematical proves and the necessary simulation that verifies

the first algorithm validity.

www.manaraa.com

5

 Chapter Six: presents conclusions, results discussion, and future work.

 Appendices: three appendices are added: the first appendix contains

simulation code, and the second contains the messages used during one

step in the simulation. The third appendix presents flowcharts for the

proposed algorithms.

www.manaraa.com

6

CHAPTER TWO

INTRODUCTION TO PARALLEL AND

DISTRIBUTED SYSTEMS

2.1. Introduction.

 Computer systems from 1945 until about 1985 were large and very

expensive. Even minicomputers normally cost tens of thousands of dollars and

took up a very huge space. Starting in the 1980s two advantages in computer

and communications technology began to change the situation. The first was the

development of powerful microprocessors. Which had a very high computing

power, but for a fraction of the price. The second development was the invention

of high speed computer networks. The Local Area Networks or LANs allow many

machines within an area to be connected to each other so a small amount of

information can be transferred between machines in millisecond (Tanenbaum,

1995).

 The result of these technologies is that it is easy to put together computer

systems composed of large number of CPUs connected by high speed networks.

They are usually called distributed systems, in contrast to the previous centralized

systems which consisted of single processor systems (Tanenbaum, 2002). This

creates a new parallel computer technology. In parallel computing, many

processors cooperate with each other to solve a huge computational problem.

 The architecture of the distributed and parallel computers consists of multiple

CPUs. Parallel computers can be organized in many different ways, especially in

terms of how they are interconnected and how they communicate. This chapter

includes the distributed and parallel systems.

www.manaraa.com

7

2.2 Distributed Systems and Parallel Computers

 Distributed system is defined as a collection of independent computers

that appear to the users of the system as a single computer. This definition deals

with hardware: the machines are autonomous and from a software perspective

the user think of the system as a single computer (Tanenbaum, 1995).

 A parallel computer is defined as a set of processors that are able to

work cooperatively to solve a computational problem (Foster, 1995).

2.2.1Advantages of Distributed Systems over Centralized

Systems.

 Economics: The most cost effective solution to get a faster computer

is to harness a large number of cheap CPUs together in a system.

This means that microprocessors offer a better price/performance

than mainframe.

 Speed: A collection of microprocessors not only can give better

performance than mainframe, but may give an absolute performance

that no mainframe can achieve at any price.

 Inherent Distribution: Some applications built as distributed systems

with separated machines.

 Reliability: If one processor or machine crashes, the system as a

whole can still survive.

 Scalability: Computing power can be added in small increments.

www.manaraa.com

8

2.2.2 Disadvantages of Distributed Systems.

 Despite the many advantages and strength mentioned, distributed

systems still have some disadvantages and weakness relative to single

processor systems:

 Networking: The distributed systems connected to each other by

networks so they suffer from the networks problems. It could lose

messages, intermittent and cut connections … etc. Once the

system comes to depend on the network, its message loss or other

problems can negate most off the advantages the distributed

system was built to achieve, this problem is not found in the single

processor systems.

 Security: The shared data that is described as an advantage of

distributed system may turn out to be a two-edged sword. If people

can share data, security is often a problem. Some users may enter

to unauthorized data and penetrate the security rules.

 Programming: This problem occurred first time with distributed

systems because it was different from normal programming. But

now I think the problem is narrated and there are many experts on

distributed programming (Tanenbaum, 1995).

www.manaraa.com

9

2.2.3.Hardware Concepts:

 In distributed systems there are several ways in which the hardware can be

organized. The structure depends on terms of how they are interconnected and

how they communicate (Tanenbaum, 1995).

 The most popular taxonomy of multiple CPU computer systems that have

been proposed is Flynn's classification. Flynn selected two characteristics that

he considered essential: the number of instructions stream and the number of

data streams. Four classifications he proposed are (Kumar et al, 2003):

 Single Instruction Stream and Single Data stream (SISD) : All

traditional uniprocessor (having one CPU) computers fall in this

category , from personal computers to mainframes.

 - Single Instruction Stream and Multiple Data Stream (SIMD): Refers

to an array of processors with one instruction unit that fetch an

instruction and then commands many data units to carry it out in

parallel, each with its own data.

 - Multiple Instruction Stream and Single Data Stream (MISD):

Pipeline computer is one of the famous examples of this type.

- Multiple Instruction Stream and Multiple Data Stream (MIMD): A

group of independent computers, each with its own program

counter, program and data. All distributed systems are MIMD

(Kumar et al,2003).

www.manaraa.com

11

MIMD Computers are divided into two groups: Multiprocessors, with shared

memory, and Multicomputers, with independent memory for each. Figure-1

shows the MIMD divisions (Tanenbaum, 2002).

 Another dimension of taxonomy is that in some systems, the machines are

tightly coupled and in others they are loosely coupled. In tightly coupled systems,

the data rate is high and message delay from one computer to another is short.

In contrast loosely coupled systems, the message delay is large and the data rate

is low.

 Multiprocessors tend to be more tightly coupled than multicomputers. Parallel

systems are used as tightly coupled systems and distributed systems are used

as loosely coupled systems. Figure-2 and Figure-3 show Multicomputers and

Multiprocessors designs (Tanenbaum, 1995).

Parallel

and

Distributed

Computers

MIMD

Multiprocessors

(Shared Memory)

Multicomputers

(Private Memory)

BUS Switched BUS Switched

Tightly Coupled
Loosely Coupled

Figure-1 Parallel and distributed systems

www.manaraa.com

11

2.2.4.Software Concepts.

 The software in distributed systems is very important as the hardware. It

presents system image to users, and it controls the way of thinking and the

behavior of the system. This section presents the various types of operating

systems software goes with which type of hardware (Tanenbaum, 1995).

2.2.4.1 Network Operating System.

 Network operating system is loosely coupled software over loosely coupled

hardware. Most organizations use this type of operating system. A workstations

1.1.1.1.1.1.1.1.1Interconnection Network

P1 P2 P3 Pn

Mn M1 M2 M3

 Figure-2 Multiprocessors design

P : Processor

M: Memory

1.1.1.1.1.1.1.1.2Interconnection Network

P

M

P

M

P

M

Figure-3 Multicomputers Design

P : Processor

M: Memory

www.manaraa.com

12

 connected by LAN are a typical example for this type. One approach of network

operating system is to provide global file system accessible from all workstations.

This approach called Clint-Server systems (Tanenbaum, 2002, Kumar et al,

2003).

2.2.4.2 True Distributed Systems.

 In network operating systems the system consists of many computers. Each

can run its own operating system and whatever its user wants. There is no

coordination at all, except for the rules that client-server traffic obey the system's

protocol.

 True distributed operating systems is found in tightly coupled software over

loosely coupled hardware. The user does not feel of distinct machine. The

machines act like a virtual uniprocessor. The essential idea in distributed systems

that users shouldn’t have to be aware of multiple CPUs in the system

(Tanenbaum, 2002).

2.2.4.3 Multiprocessor Timesharing Systems.

 In multiprocessors more than one CPU use the same shared memory. This

type of systems is tightly coupled software on tightly coupled hardware. The

characteristics of this class of systems is the existence of a single run queue: A

list of unlocked processes that are ready to run. This run queue is a data structure

kept in the shared memory (Tanenbaum, 2002)..

 An area in which multiprocessor differs from network or distributed systems

is in organization of the file system. The operating system contains a file system,

including a single block cache. When any process executes a system call, a trap

www.manaraa.com

13

is made to the operating system which carried it out, using monitor or semaphore

to lock out other CPUs while critical sections are being executed. On the whole

the file system is different from single processor system. In fact, on some

multiprocessors one of the CPUs is dedicated to running the operating system;

while the other ones run user programs. So the operating system machine is often

a bottleneck (Tanenbaum, 2002).

2.2.5 Design Issues.

 The designers of the distributed operating systems must deal with some

issues that are related to hardware and software points of view.

2.2.5.1 Transparency.

 To achieve transparency the designers should make the users feel that

the distributed system is similar to a single machine. Transparency can be

achieved at two levels. The first level, is the easiest, in this case it is aimed to

hide the distribution from the users. The second level is hard, in this case it is

aimed to hide distribution from programmer. The concept of transparency can be

applied to several aspects of a distributed system as follow(Tanenbaum, 2002):

- Location transparency: The users cannot tell where the resources

are located.

- Migration transparency: Resources can move at will without

changing their names.

- Replication transparency: the users cannot tell how many copies

exist.

- Concurrency transparency: multiple users can share resources

automatically.

www.manaraa.com

14

- Parallelism transparency: Activities can happen in parallel without

users knowing.

 2.2.5.2 Flexibility.

 The ability to add, delete and modify services to the system. The distributed

systems use two types of kernels: monolithic kernel and micro kernel. The second

kernel gives more services than the first but the first kernel is faster and small.

Micro kernel provides four minimal services:

- An interprocess communication mechanism.

- Some memory management.

- A small amount of low-level process management and scheduling.

- Low level input/output.

The monolithic kernel provides the file system, directory system, full process

management and much of the system handling (Tanenbaum, 2002).

2.2.5.3 Reliability.

 Distributed systems are more reliable than single-processor systems. The

idea is that if a machine goes down, one of the other machines takes over the

job. Availability refers to the fraction of time that the system is usable. An

availability can be enhanced by a design that does not require the simultaneously

functioning of a substantial number of critical components. Redundancy is

another tool for improving availability.

 Highly reliable system must be highly available, but that is not enough. Data

must not be lost in any way. So files must be stored redundantly on multiple

www.manaraa.com

15

servers, all copies must be kept consistent security is another factor of reliability.

Files and other resources must be protected from unauthorized usage

(Tanenbaum, 2002). Fault tolerance is also another issue of reliability. This

dissertation presents a solution for this problem using leader election algorithm

2.2.5.4 Performance.

 Performance is the most important issue in distributed system. Building a

distributed system with all the above issues without achieving better performance

than single processor does not mean any improvement. Response time,

throughput (number of jobs per hour), system utilization and network capacity are

performance metrics.

 Communication between processors, which is essential in distributed system

and absent in single processor, is typically quite slow. The best way to gain

performance is to have many activities running in parallel on different processors

and minimize the number of message sending over the network (Tanenbaum,

2002).

2.2.5.5 Scalability.

 This issue takes into considered the system growth. The distributed system

must be capable of expanding to some limit that causes improvement in

operations (Tanenbaum, 2002).

2.3.Interconnection Networks

 The communication process between distributed computers, in its two types:

multicomputers and multiprocessors, connects the processors with the shared

www.manaraa.com

16

 memory or with each other. This interconnection uses many types of networks

topology which can be classified into two types: dynamic and static networks.

Static network uses point to point communication lines in its processors

interactions. Dynamic networks are constructed by using switching elements and

communication lines (Duato et al , 1997). Interconnection networks in parallel

and distributed networks have four types:

- Direct networks.

- Indirect networks.

- Shared-Medium Networks.

- Hybrid networks

2.3.1 Direct Networks:

 Direct networks use channels to connect network processors. These

Processors communicate with each other and exchange the data using message

passing through the channels. Message passing is achieved by a set

responsible to direct the messages from source to destination, called router

(Culler et al,1999).

www.manaraa.com

17

2.3.1.1 Direct Networks Types.

2.3.1.1.1 Completely Connected Networks.

 Each processor in this type has a direct line to each one of the other

processors. The advantage of this type is that each processor can send a

message to any processor by one step. The disadvantage is the high number

of links when the processors increase

2.3.1.1.2 Star Connected Networks.

 One processor in the center of the network is connected to all the others.

Contention and single point failure are the disadvantages of this topoLogy

Figure-5 show the star network (Culler et al, 1999; Kumar et al, 2003).

P

P

P

P

P

P

Figure -4 Complete Networks

www.manaraa.com

18

2.3.1.1.3Linear and Ring Arrays.

 In ring topology each processor connects to two processors to right

and left. If the first and last processors connect to one processor the topology

becomes linear array or bus (Culler et al, 1999;Kumar et al,2003).

2.3.1.1.4Tree Networks.

 In tree network there is only one path between any two processors.

Linear and star networks are considered as types of tree networks. The

message is sent by source node to higher levels until it reaches the root node

P

P P

P P

P

 Figure-5 Star Networks

Figure-6 Ring and Linear Arrays

P P P P P

P P P P P

www.manaraa.com

19

of sub tree that contains source and destination nodes. Root node sends the

message down toward the destination.

 Tree network suffers from contention, especially in the higher levels,

when the left side needs to interconnect with the right side. This problem can

be minimized by increasing the number of links between nodes to make what

is called a Fat tree network. Figure-7 show the tree network (Culler et al,

1999;Kumar et al,2003).

2.3.1.1.5 Mesh networks.

 This topology is one of the main networks used in parallel

computers. Two and three dimensional meshes are shown in figure-8.

Figure-7 Tree Network

 a) 2D b) 3D

Figure-8 2D and 3D Meshes

www.manaraa.com

21

 Meshes have many desirable properties like scalability, modularity and

simple construction (Culler et al, 1999; Kumar et al, 2003).

2.3.1.1.6. Torus (Wraparound) Networks.

Torus network doesn’t differ from meshes except in the connection

between the first and the last nodes in each dimension. This connection

make all nodes connect to the same number of neighbors Figure-9 shows

two dimensional torus (Culler et al, 1999;Kumar et al,2003)..

2.3.1.1.7 Hypercube Networks.

 This topology has N processors which equal 2d (d is the hypercube

dimension). Each processor connects to d neighbors, Figure-10 shows

different hypercube network (Culler et al, 1999;Kumar et al,2003).

X

Y

Figure-9 2D Torus Network

www.manaraa.com

21

2.3.1.1.8 Direct Networks Evaluation.

 The following properties determine the utilization and performance of

the direct networks:

1. Diameters: the diameter of a network is the maximum distance between

any two processing nodes in the network. The distance between two

processing nodes is defined as the shortest path between them (Kumar et

al;2003). The shortest diameter is desirable because the distance determines

the communication time. The diameter in the complete networks is one link. In

star network the diameter is two and in ring it is P/2  links when P is the

number of processing units. The diameter in complete binary tree is

2(Log((P+1)/2)), in mesh without wraparound it is (P1/2-1). The diameter in

wraparound meshes is 2  P1/2/2  . For the hypercube the diameter is Log P

(Culler et al, 1999;Kumar et al,2003).

2. Connectivity. The connectivity of a network is a measure of the multiplicity

of paths between any two nodes. One measure of connectivity is the minimum

d = 1

d = 1

d = 2 d = 3

d =4

Figure-10 Hypercube Networks

www.manaraa.com

22

number of arcs that have to be removed to break down the network into two

parts. This is called the arc connectivity of the network. It is two for rings and

2-d meshes without wraparound and d for d-dimensional hypercube. The arc

connectivity is one in star network, tree and linear arrays (Culler et al,

1999;Kumar et al,2003).

3. Cost. The cost can be determined by a number of communication links in

the network. For instance linear and tree networks required P-1 links, torus

needs Width*Length links. Hypercube needs (PLog(p))/2 (Culler et al,

1999;Kumar et al,2003).

4. Symmetry. The network is symmetry when it is the same when looking at

it from different sides (Schneider, 1993; Ostrovsky et al,1994)).

2.3.2. Indirect Networks.

 There are many types of indirect networks that use shared memory:

1. Bus-Based Networks. The processors are connected to the memory by

general path called Bus. Bus-based is simple in design and structured.

Figure-11 shows bus-based network. The disadvantages of this type are the

heavy load on bus or contention and scalability. When the number of

processors increases this problem appears clearly so cache memory was

added to each processor to decrease the need for main memory (Culler et

al, 1999;Kumar et al,2003).

2. Crossbar Switching Networks. In this type a number of processors P are

connected to a number of memory banks M. Figure-12 explains this

connection (Culler et al, 1999;Kumar et al,2003).

www.manaraa.com

23

3. Multistage Interconnection Networks.

 Bus networks is scalable in terms of cost and unscalable in terms of

performance. Crossbar interconnection is scalable in terms of performance and

Bus

Shared Memory

Cache

P1

Cache

P2

Cache

P3

Cache

Pn

Figure-11 Bus-Based Network

P1

P2

Pn

Mn M1 M2

Figure-12 Crossbar Switching Network

www.manaraa.com

24

unscalable in terms of cost. An intermediate class of network connection called

multistage interconnection network lies in between. This network consists of P

processing nodes and b memory banks. Figure-13 shows commonly used

interconnection network (Omega network). An omega network has (PLog P)/2

switching nodes (Culler et al, 1999;Kumar et al,2003).

2.3.3. Shared-Medium Networks.

This type depends on shared medium made from fiber optic or metal.

This type doesn’t allow more than one machine to use the network at

the same time. It has the ability of Carrier Sense Bus and Collision

Detection. Ethernet is an example of this type(Duato et al ,1997).

2.3.4. Hybrid Networks.

Hybrid network is a combination of two types or more to increase the

speed of sending messages (Duato et al,1997).

0

1

2

3

 4

5

6

7

Output

s

Switches Inputs

Figure-13 Omega Interconnection Network

www.manaraa.com

25

2.4. Routing Mechanism for Direct Networks.

 Routing mechanism determines the path for messages from source to

destination. It affects network performance and speed. It uses source and

destination as inputs. Some routing techniques adaptive, depends on the network

state. This section explains the classification for routing mechanisms and routing

types.

2.4.1. Routing Mechanism Classifications.

 Routing mechanism classifications depend on many factors such as the

distance from source to destination, the position of routing decision and the

number of addresses the message contains.

- Distance from Source to Destination Factor. The routing mechanisms

classify into two types: Minimal routing and non minimal routing. The first

one selects the shortest path from source to destination. In the second the

shortest path is not important in selecting the routing. Minimal routing

causes contentions in some parts in the network, while the non minimal

routing may use long distance to avoid this problem (Duato et al, 1997).

- Routing Decision Location Factor.

 Depending on this factor routing mechanisms are classified into four types:

Centralized Routing. The routing is controlled by one router called

centralized controller. This type suffers dead lock and single point failure

problems.

www.manaraa.com

26

Distributed Routing. The responsibility of the routing process is

distributed among more than one router.

Source Routing. The router of the source node is responsible for routing

the messages.

Hybrid Routing. The routing process is between Source routing and

distributed routing (Duato et al, 1997).

 - Number of Addresses Factor.

 According to this factor, the routing mechanism is divided into two types:

1. Unicast Routing. Message carries one address on this mechanism. It

uses point-to point communication between processors. Although, the

simplicity of this type, time to complete the communication process is the

main disadvantage (Panda et al, 1994; Afek and Gafni ,1991).

2. Multidistination Routing. Message carries more than one address on this

mechanism. It uses one-to-many communication between processors

(Panda et al, 1994).

2.4. 2.outing Types.

 There are two types of routing mechanism: Deterministic routing and

Adaptive routing.

- Deterministic Routing. A unique path for the messages is

determined, based on source and destination. It doesn’t use any

information regarding the state of the network (Culler et al , 1999).

Congestion is the main disadvantage of this type.

www.manaraa.com

27

- Adaptive Routing. This type uses the information regarding the

current state of the network to determine the path of the message

(Larrea et al, 1999). Adaptive routing detects the congestion in the

network and routes around it.

2.4.3 Problems in Routing Mechanisms.

 Distributed algorithms need to exchange and transfer messages. Message

faces some problems during the route to its destination.

- Deadlock Problem. This occurs when the message stops, waiting

for an action that can't happen (Culler et al, 1999). This means that

the message reaches a locked path. Deadlock occurs when there

is a closed cycle in the network. This problem is solved when the

cycle is opened (Duato et al, 1997). Designers can avoid this

problem by synchronizing the steps in the overall algorithm.

- Live Lock Problem. This occurs when a message can't reach the

destination because the channel in between is busy (Duato et al ,

1997).

- Contention Problem. This occurs when there is more than one

message attempting to use the same channel. Only one can

succeed and remaining have to wait (Culler et al, 1999).

www.manaraa.com

28

2.5..Algorithms Design and Analysis

 An algorithm is a sequence of nonambiguous instructions for solving a

problem in a finite amount of time (Levitin, 2003). An input to an algorithm

specifies an instance of the problem the algorithm solves. Algorithms can be

specified in a natural language or a pseudo code; they can also be

implemented as computer program (Rechard and Kumarss, 2004).

2.5.1.Complexity and Order Analysis

 To analyze the performance of algorithms we use order analyses and

Complexity of functions:

There are tree types of functions as follow (Kumar et al, 2003; Rechard and

Kumarss, 2004; Levitin, 2003):

1. Exponential function: A function f from reals to reals is

called an Exponential function in x if it can be expressed in

the form

 f(x) = ax for x, a Ж (the set of real numbers) and a>1.such

as 2x,1, 5 x+2

 2. Polynomial functions: A function f from reals to reals is

called a polynomial function of degree b in x if it can be

expressed in the form f(x) = xb for x,b Ж and b > 0. A

linear function is a polynomial function of degree one and

a quadratic function is a polynomial function of degree two.

Examples of polynomial functions are 4 , 3x , 3.5x5.3.

www.manaraa.com

29

 3. Logarithmic functions: A function f from reals to reals that can be

expressed in the form f(x) = Logbx for b Ж and b > 1 is

logarithmic in x.

Most functions in this dissertation can be expressed as sums of two

or more functions. A function f is said to dominate g if f(x)grows at a

faster rate than g(x). Thus, function f dominates function g if and only

if f(x)/g(x) is monotonically increasing function in x. An exponential

function dominate a polynomial function and a polynomial function

dominates a logarithmic function.

2.5.2. Order Analysis of Functions.

 In the analyses of algorithms, it is often impossible to derive exact

expressions for parameters such as run time, speedup, and efficiency. In any

cases an approximation of the exact expression is adequate (Power, 1999). The

approximation may indeed be more illustrative of the behavior of the function

because it focuses on the critical factors influencing the parameters. This

approximation can be expressed by the order analyses of the expression.

The O Notation: O notation is defined as follows: given a function g(x)

, f(x) = O g(x) if and only if for any constant c>0 , their exists an x0>=0

such that f(x) <= cg(x) for all x >= x0 (Neapolitan and Naimipour, 2004;

Levitin, 2003; Kumar et al, 2003).

The Ω Notation: The O notation sets an upper bound on the rate of

growth of function . The Ω notation is the converse of the O notation.

www.manaraa.com

31

Given a function g(x), f(x) = Ω g(x) if and only if for any constant c>0 ,

their exists an x0>=0 such that f(x) >= cg(x) for all x >= x0 (Levitin,

2003;Kumar et al, 2003; Rechard and Kumarss, 2004).

The θ Notation: θ notation is defined as follows: given a function g(x)

, f(x) = θ(g(x)) if and only if for any constant c1,c2 >0 , their exists an

x0>=0 such that:c1g(x) <= f(x) <= c2g(x) for all x >= x0 (Levitin,

2003;Kumar et al, 2003; Rechard and Kumarss, 2004).

2.5.3. Worst-Case, Best-Case, and Average-Case Efficiencies.

 Worst case efficiency analysis provides very important information about

an algorithm's efficiency by bounding its running time from above. The worst case

analysis guarantees that for any instant of size N, The running time (in our

algorithms time steps and the number of messages) will not exceed its running

time on the worst-case. The best case efficiency of an algorithm is its efficiency

for the best case input of size N. The analysis of the best case efficiency is not

as important as that of the worst case efficiency. But it is not completely useless,

either. It should be clear that neither the worst case analysis nor its best case

counterpart yields the necessary information about an algorithm's behavior on a

random input. This is the information that the average case efficiency seeks to

provide. We must make some assumptions about possible inputs, to analyze the

algorithm's average case efficiency.

www.manaraa.com

31

2.6 Model Description and Properties

2.6.1 Introduction

 The computational model is hypercube network. That means interconnection

topology of the network is a hypercube graph with N = 2d nodes (d is the

dimensions of the hypercube). This section explains the model description,

properties and design assumptions for this research.

2.6.2 Model Description

 A d-dimensional hypercube network is represented by N-nodes labeled by d

binary bits from (0 to (2d -1)) (d equivalent to Log(N)). These nodes are

connected by (N Log(N))/2 bidirectional links. A zero dimension hypercube

has one node, one dimension has two nodes and two dimensions has four

nodes …etc.

 The difference between any two-neighbor nodes is only in one bit in the

labels. The distance between any two nodes equal the Hamming distance

between their canonical labels. The diameter of the hypercube equal (Log(N)).

The shortest path between any two nodes is less than or equal (Log(N)). This

path can be founded by using Exclusive Or (EXOR) operation between the

source label and destination label. The Hypercube graphs have an elegant

recursive structure. To construct a labeled (d+1) dimensional hypercube, take

two d-dimensional hypercube and extend all labels in the first one with a 0, and

all labels in the second with 1. For each process in the first one adds an edge

(of direction d) to connect it with the associated node in the second hypercube.

www.manaraa.com

32

 Each node in the hypercube is connected to its neighbors by Log(N) links.

These links can be labeled to add a useful configuration to the model. Each

link connects two nodes. Link label is obtained from the nodes labels. The

order of the different bit in the two nodes is the link label. This order is from 1

to Log(N). Figure-14 shows the 3-dimension hypercube with the labels for its

nodes.

2.6.3 Model Properties.

 Hypercube has some advantages that make it one of the preferable

topologies. Diameter of the hypercube is Log(N). Node labels in binary code

help in routing techniques. The number of links is (N Log(N))/2. Hypercube is

an attractive Structure for parallel processing due to its symmetry and

3

3

3

3

3

3

3

3

1 1

1 1

1 1

1 1

2
2

2
2

2

2

2

2

110 111

100 101

010 011

000 001

Fig-14 3 Dimension Hypercube

www.manaraa.com

33

 regularity (Castorino and Ciccarella, 1999). In fact it has been shown to be a very

versatile and robust architecture capable of executing several efficient parallel

algorithms; besides this topology is a suitable architecture for design of both

tightly coupled parallel systems and distributed systems (Ciccarella and

Patricelli, 1994). On the other hand the increase in number of links with the

increase in number of nodes is the main disadvantage in hypercube.

2.6.4 Research Assumptions.

This Research assumes the following:

1. All the communication links are bidirectional.

2. Leader node could fail due to different reasons which lead to lose the

leader property. Other nodes can detect this failure, when the time out

exceed without acknowledgement. Nodes detect this failure start the

election algorithm.

3. Routers should work all the time even with fault node because the fault

is in leader properties.

4. To solve leader failure problem, each node calculate a weight that

defines its relative importance. Then compares it with the weight of other

nodes that it has received and propagate the maximum weight. This

weight is represented in this dissertation by ID variable.

5. Each node has a distinguished ID. The election algorithm depends on

this ID.

6. The fault node shared in the election with ID = 0, so it can not win the

election.

www.manaraa.com

34

7. One intermittent link failure is recoverable.

8. The worst case for the algorithm is when the leader failure is detected by

more than one node (concurrent failure). This case becomes

complicated when the failure is detected by N-1 nodes.

9. Each node has the following variables:

- ID: A unique value for the election process.

- Position: The label indicates its position.

- Leader ID and Leader position.

- Phase and step.

- State: leader or normal or candidate.

- Flags to synchronize the election algorithm.

2.7 Conclusion.

 Chapter three presented an introduction to distributed systems and

parallel computers. Distributed systems were described, its hardware and

software were explained. The chapter also presented advantages and

disadvantages of distributed systems against single processor computer.

Interconnection networks and routing mechanisms were explained. The

chapter finished by the description of hypercube model and proposed

algorithms assumptions.

www.manaraa.com

35

CHAPTER THREE

LITERATURE REVIEW

3.1 Introduction.

 The leader election problem has been studied by a number of researchers.

In all these studies the researchers presented different methods to deal with the

leader election problem. As it will be shown, each researcher only deals with one

issue of the problem and presents a solution to this problem.

 In distributed systems the major problem that faces the researchers and

scientist is the leader failure and the relevant leader election algorithm. Election

algorithms will vary based on (Fokkink .W and Jun Pang, 2004; Junguk L. and

Geneva G., 1996; Signh,1997; abu-Amara,1988):

- Communication mechanism used (synchronous vs.

asynchronous), (wired vs. wireless).

- Node names (unique identity vs. anonymous).

- Network topology (ring, tree, complete graph, meshes, torus and

hypercube).

- The nature of the algorithms (dynamic vs. Static).

- Some of the previous work dealt with the link failure.

 Most of the previous researches were based on mathematical proof to

verify their algorithms. They used the big O notation to obtain the complexity of

the number of messages and time steps, which represent the domain factors of

www.manaraa.com

36

the algorithm complexity (Fokkink .W and Jun Pang, 2004; Junguk L. and Geneva

G., 1996; Signh,1997; Valeric et al,2001; Russell,1999). Other researchers used

simulation to validate their algorithms (Devillers et al, 2004; Vos,2000) .

 Leader election solution was first thought of at the end of the seventies, it was

started by the ring and complete networks (Leeuwen and Tan, 1987). In the

nineties meshes, hypercube and tree were studied. To date all these topologies

and wireless networks are still being studied.

 This chapter will list the most relevant researches and compare them to work

being proposed.

3.2 Related Works

 Molina-G. , Elections in a Distributed Computing Systems, 1982:This

study presented an algorithm to solve the link failure for complete

network. When a node notice that the leader is no longer responding to

requests, it initiates an election . A node P, Holds an election as follows

(Molina,1982):

1- P sends an election message to every node with the

higher number.

2- If no one responds, P wins the election and becomes

the leader.

3- If one of the higher numbers answers, it takes over

P’s job.

4- At any time the old leader recovers it takes over the

leadership so this algorithm is called Bully. (Garcia-

Molina, H ,1982)

www.manaraa.com

37

 Bully algorithm is considered a basic algorithm for election problem. It is

listed in most operating systems and distributed systems books as

an example of leader election algorithms.

 Fredrickson and Lynch, Election of a Leader in Asynchronous Ring,

1987. This study assumes the nodes are physically ordered when the

nodes represent processor and logically ordered when it represent

processes, so that each node knows who its successor is. The election

message is built when any node notices that the leader is not functioning.

The node sends messages containing its number to the successor. If

successor is down, the sender will skip over it and go on to the next

number along the ring. During each step the sender adds its own number

to the list in the message. Eventually, the message gets back to the node

that started it all. That node recognizes this event when it receives an

incoming message containing its own node number. At that point, the

node sends a leader message to inform all the nodes about the new

leader.

 Gerard, Linear Election for Oriented Hypercube, 1993: This

study proposes an election algorithm for oriented hypercube, where

each edge is assumed to be labeled with its dimension in the

hypercube. When N represents the size of the cube, the algorithm

exchanges (O(N)) messages and uses (O(Log2N)) time steps to solve

the problem in the simple case, when one node detects the leader

failure. In more complicated cases when the failure is detected by

subset of the nodes, the time complexity is linear, and the algorithm

terminates in (O(N)) time steps.

www.manaraa.com

38

How this algorithm works:

 This Gerard algorithm heavily relies on the recursive structure of

hypercube graph. A hypercube of dimension (d+1) of two copies of

the hypercube of dimension d, where each pair of corresponding

nodes is connected with an edge of direction d. To elect a leader in

this hypercube the algorithm first recursively elects a leader in both of

constituting hypercubes of dimension d, and then proceeds to level

one of the two leader nodes. To avoid confusion between leadership

at different levels of recursion, a node is called a d- leader if it won the

election in a d-dimensional hypercube. The base case of the

algorithm, election in hypercube of dimension 0, is easy; the network

consist of exactly one node, which becomes a 0-leader immediately.

To complete the election, the algorithm passes in two phases the

tournament and matching phases:

1- Tournament: After the election of d-leader in the two d-

dimensional sub-hypercube, the nodes must cooperate to elect

one of these to become the (d+1)- leader. A tournament

between two nodes that can communicate directly is easily

organized. Each node send the other one a message

containing its name. The nodes with greater ID becomes the

leader and the other becomes not-leader. But the difficulty is

when the nodes don’t know how to reach the leader in the other

side, or even their own. As the first step, node P that becomes

www.manaraa.com

39

 d-leader sends a tournament message (tour, p, d) through its

edge d. It is the responsibility of the receiving node called entry

node to forward this message to its d-leader in d steps.

2- Match- Making Technique

 To make a match between the d-leader and the entry node ,

the d-leader announces its leadership to all nodes in (d/2)

dimensional face, referred to as the leaders row. The entry node

broadcast the tournament message through a (d/2) dimensional

face called its column. There is one node, called match node, that

receives both messages.

 The election algorithm in this research needs O(N) time steps. This

time is greater than the time steps in the proposed algorithm in this

dissertation which is equal O(Log(N)).

 Abu-Amara and Loker, Election in Asynchronous Complete

Networks with Intermittent Link Failures, 1994: This study

considers the problem of a fault tolerant leader election in

asynchronous complete (fully connected) distributed networks. It

assumes that the processors are reliable, but some of communication

channels may fail intermittently before or during the execution of the

algorithm. Channel failures are undetectable due to asynchronous

nature. When N represents the number of processors in the network,

www.manaraa.com

41

 and F represents the maximum number of faulty channels on each

processor, where (F <= (N-1)/2). This algorithm uses at most

(O(N2+NF2)) messages to elect a unique leader.

This work results are not affected or related to proposed algorithms, but it

presents a solution of leader failure problem with the presence of link

failure in complete networks. The second proposed algorithm in this

dissertation solves the same problem in hypercube network.

 Antonoiu and Srimani, A Self-Stabilizing Leader Election

Algorithm for Tree Graphs 1996. This work proposed a self-stabilizing

algorithm for leader election in a tree graph. It doesn’t assume the

nodes are assigned unique identification numbers. Each node

maintains an ordered list of its neighbors and the predecessor pointer

to point to one of its neighbors or null.When the algorithm terminates

(in finite time), there is a unique node with a level value that is strictly

greater than the levels of all other nodes; this is the elected leader node

and each of the rest of the nodes has a unique way to reach that leader.

The nodes in the tree are treated uniformly in the sense that each node

executes a single uniform rule. Each node has only a partial view of the

global state; it knows its own state and the states of its neighbors.

Starting from any illegitimate state, the algorithm can elect an arbitrary

internal node to be the new leader; but no leaf node will ever be

selected as the leader of the tree (a leaf node in a tree is a node with

www.manaraa.com

41

 exactly one neighbor). The work shows that it may not be possible to

design a self stabilizing protocol that can elect a leaf node to be the

leader.

The work didn’t present analyses for the number of messages and time

steps, it presented just the steps and description of the algorithm.

 Flocchini and Mans, Optimal Election in Labeled Hypercube,

1996: In this work the election problem in hypercube networks was

studied, by using two models with sense of direction, the dimensional

and the distance models. The proposed algorithm needs ((Log3N))

time steps using ((N)) messages(Flocchini and Mans,1996).

 Algorithm Description: The algorithm Proceeds in phases of

tournament. The idea is to halve the number of computing processors on

each phase such that on overall LogN phases; or steps. Initially all nodes

are duelist (0). The algorithm terminates after log(N) steps with a single

Duelist (duelist(Log(N)) and all the other nodes are second. In every

phase of the algorithm, each successful Duelist goes for the next duel by

challenging its respective Duelist. The algorithm is based on repeated

sequences of a duel (namely a combination of two cubes into a large one)

and, hence takes Log(N) steps (one per dimension).

At each step K, each duelist has to challenge (sends an attack) and to be

challenged (receives an attack) by its respective duelist in the rank of the

tournament (the duelist node in its cube image according to the dimension

www.manaraa.com

42

 K). The opposite duelist handshake: the duelist with the greater identity

value wins the duel of step K and becomes duelist of level K+1. The

duelist with the smaller identity value loses and becomes a Second of

level K and keeps the path of its winner. Neither acknowledgement nor

surrender messages are required. The task of a duelist is to fight a duel,

whereas the task of a second is to relay an incoming attack to its duelist.

When an attack From duelist(S) reached a Second(K) , (with K< S), the

second forwards it to the nodes that will be known as duelist(K+1). If this

node has been defeated and became a second, it forwards it to its

respective duelist(K+2). The process is repeated until the duelist(S) is

found.

 Singh G., Leader Election in the Presence of Link Failures, 1996:

This research proposes a protocol for leader election tolerant to

intermittent link failure in the complete graph network. It assumes that up

to (N/2 – 1) links incident on each node may fail. It assumes that up to

(N2/4 – N/2) links overall the system may fail. In this case nodes represent

the processors and edges represent bi-directional communication

channels between the processors. In this problem, it is assumed that

initially all nodes are passive, an arbitrary subset of nodes, called the

candidate nodes, wake up spontaneously and start the protocol. On the

termination of the protocol exactly one node must announce itself the

leader. The protocol depends on the fact that for any pair (i,j) of nodes,

there exists a node k such that both i and j have no faulty link to k .

www.manaraa.com

43

 The protocol composed of iterations. Iterations composed of phases.

When the iterations reach (Log(N) + 2) the node is the leader. The

message complexity of the protocol is (O (N2)).

 This work results related to proposed algorithms, but it presents a

solution of leader failure problem with the presence of link failure. The

second proposed algorithm in this dissertation solves the same problem in

hypercube network.

 Dolev S., Israeli A. and Moran S,(1997)., Uniform Dynamic Self-

Stabilizing Leader Election.

 This research studies uniform dynamic self stabilizing protocols for

leader election under read/write atomicity. Protocols use randomizes

to break symmetry. The leader election protocol stabilizes in (O(Δ

DLog(N))) time when the number of processors is unknown and (O(Δ

D)),otherwise. Here Δ denotes the maximum degree of nodes, D

denotes the diameter of the graph and N denotes the number of

processors in the graph.

 Stefan D. and Peter R., Linear Broadcasting and (N (Log

(Log(N)))) Election in Unoriented Hypercube, 1997. This work

provides two algorithms for broadcasting and leader election in

unoriented hypercube. When N represent the number of vertices in

www.manaraa.com

44

 the hypercube, (O(N)) broadcasting and traversing algorithms are

introduced. The second algorithm design an O(N(Log(Log(N)))

messages Leader election algorithm in unoriented hypercube.

 This research ignored the effects of time steps and focused on the

number of messages to get the best results. In our dissertation the

proposed algorithms attempts to compromise between time steps and

number of messages were done to get better time steps than the other

algorithms in hypercube.

 Castorino A. and Ciccarella G.,(1999), Optimal-Election

Algorithms for Hypercube. This research studies leader election

algorithm for hypercube networks. It has presented two algorithms

based on the hypothesis that the election process may be started by

one processor, so the cope with a typical situation that may arise in

several distributed systems. In this research the time complexity is

OLogN and the number of messages is O(N) messages.

The first algorithm in this paper, which is called, Round trip algorithm

is divided into two phases: in the first one the nodes cooperate to elect

a leader (election phase) till one of them obtains the result of the

election process. In the second phase (Broadcasting phase) the node

that possesses the result broadcast all the other nodes. In the second

algorithm which is called Parallel Election Algorithm it composed of

two phases as in the first algorithm; but the difference is that the

www.manaraa.com

45

 election process is started by two nodes in different hypercube.

The difference between our proposed algorithm and these algorithms

besides the complexity is that this paper doesn’t take the worst case

when the leader failure is detect by all nodes.

 Yamshita M. and Kammeda T., Leader Election Problem on Networks

in which Processor Identity Numbers are not Distinct, 1999.

 This research solve leader election problem in a network in which

processors identity are not distinct. It uses a simple network graph which

has neither self loops nor parallel edges. Performance evaluation

depends on the number of messages and message length. When the

message length is (O Log(N)) the number of messages is bounded by

(O(N | E |)) , E is number of edges. This work doesn’t relate to proposed

algorithms because the proposed algorithms solve the problem when

processor Identity numbers are distinct

 Navneet M., Jennifer L., Welch, Nitin V., Leader Election

Algorithms for Mobile Ad Hoc Networks, 2001: This research presents

two new leader election algorithms for mobile ad-hoc networks. The

algorithms ensure that eventually each connected component of the

topology graph has exactly one leader. The algorithms are based on

routing algorithms called TORA.

 Sudarshan V., Decleene B., Immerman N. , Kurose J.,Towsley D.,

Leader Election Algorithms for Wireless Ad Hoc Networks, 2003.

This study proposes two cheat-proof election algorithms: Secure

extreme Finding Algorithm (SEFA), and Secure Preference-based

www.manaraa.com

46

 Leader Election Algorithm (SPLEA). Both algorithms assume

asynchronous distributed systems in which the various rounds of election

proceed in a lock-step fashion. SEFA assumes that all elector-nodes

share a single common evaluation function that returns the same value

at any elector-node when applied to a given candidate-node. When

elector-nodes can have different preferences for a candidate-node, the

scenario becomes more complicated. SPLEA deals with this case. Here,

individual utility functions at each elector-node determine an elector-

node’s preference for a given candidate-node.

 Fokkink and Pang, Simplifying Itia-Rodeh Leader Election for

Anonymous Ring, 2004. this work presents two leader election

algorithms for anonymous unidirectional rings with FIFO channels,

based on finite-state. They satisfy the property with probability 1,

eventually exactly one leader is elected. The generation of state space

and verification were performed on a1.4 GHz AMD Althlon Processor

with 512 MB memory. This research solved the election problem in

ring which is not affected or compared with dissertation algorithms.

 Jean-Franqois Marckert (2005), Quasi-Optimal Leader Election

Algoriths in Radio Network with Log-Logarithmic Awake Time

Slots.

This work presents two leader election protocols for radio networks, in

both telephone and walkie-talkie models, where the number of radio

is unknown. Those randomized protocols are shown to elect a leader

www.manaraa.com

47

in (O(Log(N))) expected time, and to be energy-efficient

due to a small total awake time of the radio stations.

3.3 Conclusion.

 This chapter presented different types of leader election algorithms.

Differences were in date of publishing or in the subject of the work. The Chapter

gave a short description of related works, and compared it with proposed

algorithms. Other comparisons will be done through dissertation pages.

www.manaraa.com

48

CHAPTER FOUR

NEW LEADER ELECTION ALGORITHMS IN

HYPERCUBE NETWORKS

4.1 Introduction

 This chapter presents description for the two algorithms. The first algorithm,

presents a new idea for leader election algorithms in hypercube with minimum

time steps and number of messages. This algorithm is composed of three

phases; the description for all three phases is presented in section 4.2. These

phases and all steps within each phase are explained using a Pseudo code for

the algorithm. The second algorithm, presents a new idea for leader election in

hypercube with the presence of one link failure. The second algorithm is

explained in section 4.3.

4.2 Proposed Leader Election Algorithm in Hypercube.

 The leader election algorithms solve the problem of leader failure. As

described in Chapter two this problem studied in different ways and several

algorithms were designed with different complexity. This algorithm presents a

solution for leader election in hypercube with minimum time steps and number of

messages.

www.manaraa.com

49

 4.2.1 Algorithm Description

 The proposed algorithm consists of three phases. Each phase has a

number of time steps and messages. Phase one is initiated when one or more

nodes detects the leader failure, this initiates an election process. This phase

reduces the numbers of participated nodes in the election process to N/2 nodes

who are aware of the election. The second phase uses the reduction all-to-one

communication operation to have the result in one node that posses the

address (X10203…0d) (X means 1 or 0 , d represents the hypercube diameter).

When X = 0, the half of the hypercube with the most left bit in the nodes labels

= 0 will continue the algorithm until the leader is known by (010203…0d) and the

other half halt the processing, and vice versa. Finally, in the third phase node

address (X10203…0d) broadcasts the leader message to all nodes in the

hypercube using broadcast one-to-all communication operation. During each

step, in phase one and two, the received ID is compared with the local ID. The

greater ID is passed to the next step. The orders of steps for the phases are as

follows:

 Phase One: This phase starts when one or more nodes detect a leader failure.

Each node detect the failure initiate the election:

 Step1: send an election message to the node that differs in

label in the first bit from the right through link 1. Election message is

composed of (phase, step, winner ID, and winner position).

 Step2: the sender and receiver in the previous step send an election

messages to the two associated nodes that differ in the second bit

from the right through link 2.

www.manaraa.com

51

 Step3: the senders and receivers from the previous step send an election

messages to the nodes that differ in the third right bit through link 3.

The next steps are the same until step Log(N) is reached.

In Step Log(N): N/2 nodes (the senders and receivers from the Log(N) –1

step) send an election messages to the nodes that differ in the Log(N)

right bit through link Log(N).

During the execution of phase one, if the receiver is aware of the failure and

is in progress with its own initiated election step, it will complete the greater

step and terminate the smaller one. Each node receives the election

message, compares its own ID with the received ID then completes the next

step with the greater ID. Phase one ends after Log(N) steps, reducing the

participant nodes to N/2. The leader ID and its position for the whole

hypercube are within (Log(N) –1) dimension hypercube.

 Phase Two: The second phase uses the reduction all-to-one communication

operation to guide the result towards the node that have the address X10…0d.

This is achieved as follows:

Step1: nodes with the second left bit = 1 (X11X3…Xd) send an election

message to nodes with the second left bit = 0 (X10X3…Xd) through link

Log (N) – Step number.

 Step2: the receivers in the previous step and third bits in its labels = 1

(X1X21…Xd) send an election messages to the nodes that differ in this

bit (X1 X20…Xd) through link Log (N) – Step number. The

next steps are the same until step Log(N) -1 is reached.

www.manaraa.com

51

Step (Log(N) – 1): the receiver in the previous step with Log(N) bit in its

label equal 1 (X10203…1d) , sends an election message to the node that

differ in the right most bit (X10203…0d) through Log (N) - step.

 After the end of phase 2 the last node (X10203…0d) is the node that has all the

information to deduce the leader ID.

Phase3: In this phase the node (X10203…0d) broadcasts a message containing

the result of the election using one-to-all broadcast operation, the broadcasted

message (leader message) contains new leader ID.

www.manaraa.com

52

4.2.2 Examples

- Example One:

 In this example leader election algorithm is applied using three dimensional

Hypercube with eight nodes. Example Assumes that, node with label 101 detects

leader failure; the algorithm will be executed as follows:

Step One: Node 101 changes step to 1, and sends an election message to node

100 through link label = 1 (Solid arrow in the figure 15).

Step Two: Nodes 101, 100 change step to 2 and select the greater ID. Then

they send election message to nodes differ in the second bit from right (110,111)

through link 2 (Dash arrows in the figure 15).

Step Three: Nodes (100,101,110,111) compare its ID with the received ID and

select the greater, then change Step to 3 and send election messages to nodes

(000,001,010,011) respectively (Dots arrows in figure 15). After step 3 which is

equal Log N phase two is started in half of the hypercube.

3 time steps and 7 messages are needed for phase 1.

3

3

3

3

3

3

3

3

1 1

1 1

1 1

1 1

2
2

2
2

2

2

2

2

110 111

100 101

010 011

000 001

Figure 15 Phase One messages in Example One

www.manaraa.com

53

Phase Two:

Step One: Nodes (010, 011) compare received ID with local ID and select the

greater. Then they send election message to nodes (000,001). (Solid arrows in

figure-16).

Step Two: Node 001 send winner ID to node 000. after step two which is step

(Log (N)-1) the leader ID and position is Known by node 000. (Dashes arrow in

figure-16).

1 time steps and 3 messages are needed to complete phase 2 in this

example.

Phase Three (Broadcast Phase):

 Step 1: Node 000 send Leader message to node 001.(Solid arrow in Figure

17)

3

3

3

3

3

3

3

3

1 1

1 1

1 1

1 1

2
2

2
2

2

2

2

2

110 111

100 101

010 011

000 001

Figure-16 Phase Two messages

www.manaraa.com

54

 Step 2: Nodes 000,001 send leader messages to nodes 010, 011.(Dash

arrows in Figure 17)

 Step 3: Nodes 000,001,010,011 send leader message to nodes

100,101,110,111. after Phase three network return stable with new leader. (Dot

arrows in Figure 17)

3 time steps and 7 messages to complete phase 3.

Total number of time steps is equal:

3+2+3 = 8 time steps

Total number messages are equal:

 7 +3 +7 = 17 messages

- Example Two:

 This example assumes that nodes with labels 101,001, and 010 detect leader

failure, the algorithm will executed as follows:

3

3

3

3

3

3

3

3

1 1

1 1

1 1

1 1

2
2

2
2

2

2

2

2

110 111

100 101

010 011

000 001

Figure-17 Phase Three messages in Example 1

www.manaraa.com

55

Step One: Nodes that detect the failure, change step to 1. After that it sends

election message to nodes differ in the first bit from right through link label = 1,

as follows:

 101 sends election message to node 100

 001 sends election message to node 000

 010 sends election message to node 011

These messages are shown in solid lines in Figure 18.

Step Two: Nodes 000,001,010,011,100and 101 change step to 2 and select the

greater ID. Then they send election message to nodes differ in the second bit

from right (010,011,000,001,110,111) respectively through link 2 (Dash lines

in Figure 18).

Step Three: Nodes ,that Know about election, compare its ID with the received

ID and select the greater, then change Step to 3 and send election messages to

3

3

3

3

3

3

3

3

1 1

1 1

1 1

1 1

2
2

2
2

2

2

2

2

110 111

100 101

010 011

000 001

Figure 18: Phase One messages in example two

www.manaraa.com

56

 nodes differ in the third bit from right (Dot lines in figure 18). After step 3 which

is equal Log N, phase two is started by the first half of the hypercube, while the

second half stop the process. 3 time steps and 25 messages to complete phase

1.

Phase Two and phase three same as in example one:

Total number of time steps is equal:

3+2+3 = 8 time steps

Total number messages are equal:

 25 +3 +7 = 35 messages

4.2.3 Abstract Algorithm

 This section presents the pseudo code for the election algorithm. A

number of assumption and variables have to be assigned, these are as

follows:

 Each node has the following variables:

a. Local ID: the node ID that participate in the election process.

b. Local Pos: The node Position.

c. Curr_Step: Last step in the election process.

d. Ph1_finish_flag: if true it indicates that the Phase 1 was finished.

 The algorithm uses two types of messages

 Election: contains Phase (1 OR 2), step, ID(the winner ID),

Pos (The winner position).

 Leader: contains the new Leader (ID and Position).

 The nodes are in one of two states:

www.manaraa.com

57

 Normal: when the node is unaware of any failure and the

network is normal.

 Candidate: when the node is aware of the failure and the

node is participating in the election process.

 Leader: one node must have this state in stable network.

1. Case state = normal
 Upon detecting failure
 {
 State = Candidate
 Phase = 1

Step = 1
 ID = Local_ID
 Pos = Local_Pos
 Curr_Step = Step
 Send Election(Phase, Step ,ID, Pos) on Link 1.
 }

Upon receiving election message on link r

 if (Phase == 2)
 Store the message and wait until the state becomes candidate and Phase 1

finish.
 else
 {

 State = Candidate
 if (ID < Local ID)
 {
 ID = Local ID
 Pos = Local Pos
 }

 if (r < Log(N))
 {
 Step = Step+1
 r = r+1
 Curr_Step = Step
 Send Election(Phase, Step ,ID, Pos) on Link r .
 }
 if (r = Log(N))
 {
 Ph1_finish_flag = true
 if (node label = (XX…1X))
 {
 Phase = 2
 Step = 1

www.manaraa.com

58

 r = Log(N) – Step
 Curr_Step = Step
 Send Election(Phase, Step ,ID, Pos) on Link r .
 }
 }

 }

 Case state = Candidate

Upon Receiving Election message
 If (Phase = =1)
 {
 If (Curr_Step > Step)
 Ignore the message
 If (Curr_Step == Step) and (the r bit in the node label = =1)
 Ignore the message

 If (Step > Curr_Step) OR ((Curr_Step == Step) and (the r bit in
the node label ==0)) and (r < Log(N))

 {
 Step = Step+1
 r = r+1
 Curr_Step = Step
 Send Election(Phase, Step ,ID, Pos) on Link r .
 }

 if (Step > Curr_Step) OR ((Curr_Step == Step) and (r ==

Log(N))) and (node_ label == (XX…1X))
 {
 Phase = 2
 Step = 1
 r = Log(N) – Step
 Curr_Step = Step
 Send Election (Phase, Step, ID, Pos) on Link r.
 }

 }
 if (Phase == 2) and (Ph1_finish_flag = True)
 {
 if (Step< LogN –1)
 {
 Step = Step +1

 r = Log(N) – Step
 Send Election(Phase, Step ,ID, Pos) on Link r

 }
 if (Step == LogN –1)
 BROADCAST LEADER(ID,Pos)
 }

 Appendix three shows a flowchart for the first algorithm

www.manaraa.com

59

4.3 Proposed Leader Election Algorithm in Hypercube with

the Presence of One Link Failure:

 This section describes the Leader Election Algorithm in Hypercube with the

Presence of One Link Failure in plain text and in Pseudo code.

4.3.1 Algorithm Description

 This algorithm consists of three phases. Each phase has several steps and

messages. Phase one is initiated when one or more nodes detect a leader failure,

it initiate the election process. This phase reduces the count of participated nodes

in the election process to N/2 nodes aware of the election. The second phase

uses the reduction all-to-one communication operation “with additional steps to

deal with link failure” to have the result in one node that have the address

(X10203…0d) (X means 1 or 0). Finally in the third phase (X10203…0d) node

broadcasts leader message to all nodes in the hypercube using broadcast one-

to-all communication operation, “with additional steps to deal with link failure”.

During each step in phase one and two, the received ID is compared with the

local ID. The greater ID is passed to the next step. The steps for phases are as

follows:

 Phase One: This phase starts when one or more nodes detect the leader

failure. Each node detect the failure change its state to candidate

and initiate the election algorithm:

 Step1: Send an election message to the node that differs in the right

most bit through link 1. Election message composed of (phase,

step, winner ID, winner position). The election message change

the state of receiving node from normal state to candidate state.

www.manaraa.com

61

 Step2: The sender and receiver in the previous step (nodes in

the candidate state) send an election messages to the two

associated nodes that differ in the second right most bit

through link 2.

 Step 3 to LogN : The senders from the previous step send an

election messages to the nodes that differ in the r right bit

through the link Step. The receiver nodes send an

authentication message (election message) through link

Step-2 to insure that the election message reached the

node, due to link failure. After sending the authentication

message the node wait for acknowledgement or time out to

send election through link r.

 The nodes that receive the authentication message may have

also received the election message in advance, so the

authentication message is ignored (not acknowledged)

after receiving the greater ID. In the second case ,when the

authentication message is received by a node in normal

state, To deal with the probability of link failure the node

send election message through link (Step-1). In both cases,

the nodes that receive the authentication message send an

acknowledgement to the sender.

 The nodes that receive the authentication message send an election

messages through Step + 1 link to continue the algorithm. The next

steps are the same until step Log(N) is reached.

www.manaraa.com

61

Step Log(N) : N/2 nodes (the senders and receivers from the

Log(N) –1 step) send an election messages to the nodes

that differ in the Log(N) bit order from right through Log(N)

link. End phase one.

 After this phase leader ID is within N/2 nodes. These nodes will

continue to phase 2.

 During the execution of phase one, if the receiver is in progress in

the algorithm, it will complete the greater step and terminate the

smaller one. Each node receives the election message; it compares

its own ID with the received ID then completes the next step with the

greater ID. Phase one ends after Log(N) steps, reducing the

participant nodes to N/2. The leader ID, and its position for the whole

hypercube will be within (Log(N) –1) dimensional hypercube. If the two

sub hypercube reach step Log(N) simultaneously ‘in the worst case’

the sub cube with the most left bit = 0 complete the algorithm. And

the other sub terminate.

 Phase Two: The second phase uses the reduction all-to-one

communication operation. Our algorithm adds some alterations deal with

the link failure.

 The operation applied to (N/2) nodes hypercube that resulted from phase

one, will have the result in the node that have address X102…0d. this is

achieved as follows:

www.manaraa.com

62

Step1 To Step (Log (N) –3) : nodes that reached phase two with bit order

from left (step + 1) and (step + 2) have the value =1 (X111X4…Xd)

exchange the greater ID with the nodes with the same properties except

that (step + 2) bit order from the left = 0 through the link (Log(N) – step –

1). The participants in the exchange need an acknowledgement or it will

wait until time out to progress. After the exchange, these nodes send

election message to nodes with the second left bit = 0, (X10X3…Xd)

through link (Log(N) – step). These steps include the result inside a two

dimensional hypercube even with the probability of one link failure.

 Step (Log(N) -2): the receivers in the previous step and with the two

right bits in the nodes labels (10, 01) send an election messages to

node with the two right bits(11).

 Step (Log(N)-1): After comparison and receiving the greater ID

node with the two right bits (11) sends the winner ID and position to

nodes with the two right bits (10, 01).

 Step Log(N): In last step nodes with the two right bits (10, 01) send

an election message to the node (X10203…0d).

www.manaraa.com

63

 After the end of phase 2 the last node (X10203…0d) is the only node that

knows the leader ID.

Phase3: In this phase, the node (X10203…0d) broadcasts the result to all nodes

considering the link failure. Leader message contains new leader ID and position.

The broadcast will be as follows:

Step 1 : node (X10203…0d) send leader message through link (step)

to node (X10203…1d).

Step 2 : after increment the step value, the two nodes in phase 1

send the message through link (step).

Steps 3 to Log(N): Each node that receives the leader message

sends it through the link step. Due to the probability of the presence

of link failure in this phase each node receives the leader message

sends another message through link (step – 2) to check if the

message reaches the other side. Node that receives the extra

message and is already aware of the broadcast ignores the extra

message. If the node does not know about the message it sends

the extra message through link (step -1) .The last message isn’t

needed after step (Log (N)).

www.manaraa.com

64

4.3.2 Abstract Algorithm

 This section presents Pseudo code for the election algorithm. Each

node has the following properties:

a. Local ID: the node ID that participate in the election process.

b. Local Pos: The node Position.

c. Curr_Step: Last step in the election process.

 The algorithm uses five types of messages.

 Election: contains Phase (1 OR 2), step, ID (the winner ID)

,Pos (The winner position).

 Leader: contains the new Leader (ID and Position).

 Authentication: contains Phase (1 OR 2), step, ID (the winner

ID) , Pos (The winner position).

 Acknowledgement: contains (OK) and the max ID it

knows.

 Check: node receives the authentication message sends a

check message to avoid the effect of link failure.

 The nodes are in one of three states:

 Normal: when the node is not aware of any failure and

the network is normal.

 Candidate: when the node is aware of the failure, and

participating in the election process.

 Leader: one node must has this state in stable network.

www.manaraa.com

65

1. Case state = normal
 Upon detecting failure
 {
 State = Candidate

 Phase = 1 Step = 1

 ID = Local_ID
 Pos = Local_Pos
 Curr_Step = Step
 Send Election(Phase, Step ,ID, Pos) on Link 1.
 }
Upon receivingd election message on link r
 if (Phase == 2)
 Store the message and wait until the state becomes candidate

and Phase 1 finish.
 else
 {

 State = Candidate
 if (ID < Local ID)
 {
 ID = Local ID
 Pos = Local Pos
 }

 Send authentication message on link step-1
//authentication message
contain same information
such as election
message.

 }
 Upon receiving authentication message

 {
 If step < Log(N)
 {
 Compare ID and send acknowledgment on link step

-1
 Send check message on link step // to overcome

link failure
 }
 If step = Log(N)
 {
 Compare ID and choose the winner
 Phase = 2
 Step = 1

www.manaraa.com

66

 State = candidate
 Send exchange message to the node that differs in the third

most left in label
 And wait until receiving the opposite message or

timeout.

 }

 Upon receiving check message
 Compare ID and send election message on link step

+ 1
 if (r < Log(N))
 Step = Step+1
 r = r+1
 Curr_Step = Step
 Send Election(Phase, Step ,ID, Pos) on Link r

.
 }
 if (r = Log(N))
 {
 Ph1_finish_flag = true
 if (node label = (XX…1X))
 {
 Phase = 2
 Step = 1
 r = Log(N) – Step
 Curr_Step = Step
 Send Election(Phase, Step ,ID, Pos) on Link

r .
Up on receiving leader message or check message
 Ignore the message /// because these messages just effect

candidate state

 case state = Candidate

Upon Receiving Election message on link r
 If (Phase = 1)
 {
 If (Step < Log(N))

www.manaraa.com

67

 If (Curr_Step > Step) or((Curr_Step == Step) and (the r bit in the node label =

=1)
 Ignore the message

 Else if step >=2
 {
 compare id and send authentication message

on link step -1
 wait for acknowledgement
 }
 }
 If step = Log(N)
 {
 phase = 2
 step = 1
 Send exchange message on link Log(N) – step – 1
 }
 if (Phase = 2)
 {
 if (step < Log(N) – 3)
 {
 compare the ID’s
 ++step
 send exchange message on link Log(N) – Step – 1
 if (step = Log(N) -3)
 {
 Compare the ID’s
 ++ step
 if the second and third left bit = 10
 send election message on link 1
 if the second and third left bit = 01
 send election message on link 2
 }
 if (step = Log(N) -2)
 {
 Compare the ID’s
 ++ step
 send election message on link 1 and 2
 }
 if (step = Log(N) -1)

www.manaraa.com

68

 ++step
 if the second and third left bit = 10
 send election message on link 2
 if the second and third left bit = 01
 send election message on link 1
 }
 if (step = Log(N))
 {
 compare ID’s
 Send LEADER MESSAGE on link 1
 }
} // end election message

Up on receiving authentication message on link r

 {
 Compare ID and send acknowledgment message on
link r.
 ++Step
 Send election message on link r+ 1
 }
Upon receiving Acknowledgment message or time out
 {
 Compare ID
 ++ Step
 Send election on link step
 }

 Up on receiving Leader message on link r
 {
 Change Leader ID to the new leader.
 Change node state to normal.
 If (r< Log(N))
 send leader message on link r+1
 if r > = 2 send Check message on link r-1
 }
 Up on receiving Check message on link r
 Send leader message on link r+1

END OF THE ALGORITHM

www.manaraa.com

69

Appendix three shows a flowchart for the second algorithm

4.4 Conclusion.

 Chapter four described the proposed algorithms in two ways: Plain text and

pseudo code. Each algorithm is composed of three phases. Each phase is

composed of several steps. Synchronizations between phases and steps

were controlled by using Boolean flags. Flags can hold the algorithm in any

node to wait until the phase or step is reached.

 The proposed algorithms deal with the most common problem in

centralized distributed systems. The new leader election algorithm in

hypercube networks proposed is a new algorithm that differs from all

previous algorithms in its design and efficiency. It focuses on minimizing

the time steps and the number of messages. The leader election algorithm

in hypercube with the presence of one link failure is the only solution that

deals with the presence of a link failure in hypercube networks.

 Next chapter will present analyses and performance evaluation for the

proposed algorithms.

www.manaraa.com

71

CHAPTER FIVE

PERFORMANCE EVALUATION AND

SIMULATION

5.1 Introduction

 The algorithm is analyzed by computing the number of messages and time

steps. The analyses process is carried out for the two cases. The first is the

simple case when the failure is detected by one node. While the second case, is

when the leader failure is detected by subset of nodes which can reach all nodes

in the worst case. Analyses are presented in this chapter to compute the

messages and time steps for each algorithm. In Section 5.2.1 the new leader

election algorithm in hypercube is analyzed. In Section 5.2.2 the leader election

algorithm in hypercube in the presence of one link failure is analyzed. Section 5.3

presents the simulation and proof for the first algorithm by simulation.

5.2 Analyses.

 The Proposed algorithms are evaluated and their performance is computed

mathematically in this section.

5.2.1 New Leader Election Algorithm in Hypercube Networks

 This algorithm performance is evaluated in simple case when the leader

failure is detected by one node and the worst case when the leader failure is

detected by N-1 nodes.

www.manaraa.com

71

5.2.1.1 Simple Case.

 Theorem 1: In the simple case, the number of messages needed to complete the

algorithm is at most O(N) messages.

Proof:

To find the number of messages, a complete computation is carried out for each

phase, and then the total number of computation for the overall algorithm is

calculated.

Phase One:

 During this phase, each node receives one message except the initiator. So

the number of messages is equal to (N-1). Another way to compute the

messages during phase one is as follows:

 Step 1: Needs one message from the initiator to the node that differ in the

right bit

 Step 2: Needs two messages from the participated nodes in step1 to nodes

differ in bit order 2 from right, and so on until the step Log (N) is reached.

This is shown in Equation (1).

 122....222
1)(

0

)1(210  




 N
NLog

i

iNLog (1)

 Phase Two: Each node sends one message during the second phase

(reduction phase) except the last node, so the number of messages is equal to

(N/2 – 1).

 In step1, (N/4) election messages are sent, in step2 (N/8) is sent until the

last step which needs N/N message. This is as in Equation (2).

www.manaraa.com

72

)1
2

(2......
1684

2)(

0

 




N

N

NNNN NLog

i

i (2)

 Phase Three: Broadcast needs N-1 messages, since each node receives one

leader message except the initiator. This is shown in Equation (3).

 12
2

...8421
1

0

 




N
N LogN

i

i (3)

The total number of messages is given by Equation (4).

 Total:

)(3
2

5
)1()1

2
()1(NO

N
N

N
N  Messages (4)

Theorem 2: The election algorithm in the hypercube becomes stable with a new

leader by O (Log (N)) time steps.

Proof:

 The same procedure as above is followed to find the total time steps.

 Phase One: Reducing the nodes containing the leader ID to one half of the

nodes, this will need Log (N) time steps.

 Step 1: node detects the failure sends the election message to node

that differ in the first bit from the right.

 Step 2: nodes knowing about the election send the election messages

to nodes that differ in the second bit from the right.

 Steps 3 to Log (N): nodes knowing about the election send the election

messages to nodes that differ in the (Step number) bit order from

the right.

 Phase Two: this phase resumes the election process with (d-1) dimensional

hypercube with all its nodes aware of the election process, and the nodes in this

www.manaraa.com

73

phase are in position of the election result from the first phase. The reduction

algorithm is used to guide the result of the election in this phase to one node in

position of all the information regarding the new leader ID, this will require (Log

(N) –1) Steps. These steps are described in algorithm description in Chapter

Three.

 Phase Three: Broadcasting (One-To-All), the leader message in hypercube

needs Log (N) time steps as follows:

 Step 1: node that has the new leader information sends this

information to the node differs in label address in the most left

bit.

 Step 2: the sender and receiver in the previous step send the leader

information to the nodes differ in the bit order 2 from left.

 Steps 3 to Log(N): receivers and senders in the previous steps send

the leader message to nodes differ in the bit order (Step

number).

The total time steps for all phases is in Equation (5).

 Total :
(5) TimestepsNLogONLogNLogNLogNLog))((1)(3)(1)()(

www.manaraa.com

74

5.2.1.2 Worst Case:

 Theorem 3: The number of messages needed to complete the
algorithm, in the worst case, is at most O(N Log(N)) messages.
Proof:
 To find the number of messages, it is necessary to compute the number of

messages for each phase then calculates the total number of messages for the

algorithm.

 Phase One: Each node sends one message during each step in the first

phase. The number of nodes is equal to (N-1) and the number of steps is equal

to Log (N). This phase needs:

 (N-1) * (Log(N)) = N Log(N) – Log(N) messages (6)

 Phase Two: each node sends one message during the second phase

(reduction phase)

 except the last node, so the number of messages is equal to (N/2 – 1).

 In step1 (N/4) election messages are sent. In step2, (N/8) is sent until the

last step which needs N/N message. This is as in Equation (7).

)1
2

(2......
1684

2)(

0

 




N

N

NNNN NLog

i

i (7)

 Phase Three: Broadcast needs N-1 messages, since each node receives one

leader message except the initiator. This is shown in Equation (8).

 12
2

...8421
1)(

0

 




N
N NLog

i

i (8)

www.manaraa.com

75

 Phase Two and Phase Three are same as in simple case. The total for the

election algorithm in worst case is in Equation (9).

 Total :

MessagesNNLogON
N

NLogN))(()1()1
2

())()(1( (9)

Theorem 4: In any case the election algorithm in the hypercube becomes stable

with a new leader by O (Log(N)) steps.

 Proof:

 Phase One: Reducing the nodes containing the leader ID to one half of the

nodes. This will need Log (N) time steps.

 Step 1: nodes detect the failure sends the election message to node

that differ in the first bit from the right.

 Step 2: nodes aware of the election send the election messages to

nodes that differ in the second bit from the right.

 Steps 3 to Log (N): nodes aware of the election send the election

messages to nodes that differ in the (Step number) bit order from

the right.

 Phase Two: this phase resumes the election process with d-1 dimensional

hypercube with all its nodes aware of the election process, and the nodes in this

phase are in position of the election result from the first phase. The reduction

algorithm is used to guide the result of the election in this phase to one node in

position of all the information regarding the new leader ID, this will require (Log

(N) –1) Steps these steps are described in algorithm description in chapter three.

www.manaraa.com

76

 Phase Three: Broadcasting (One-To-All), the leader message in hypercube

needs Log (N) time steps as follows:

 Step 1: node that has the new leader information sends this

information to the node differs in label address in the most left

bit.

 Step 2: the sender and receiver in the previous step send the leader

information to the nodes differ in the bit order 2 from left.

 Steps 3 to Log(N): receivers and senders in the previous steps send

the leader message to nodes differ in the bit order (Step

number).

The total time steps for all phases is in Equation (10).

 Total :
TimestepsNLogONLogNLogNLogNLog))((1)(3)(1)()( (10)

From the previous proof, we note that the time steps are the same for any case in

proposed algorithm.

Analysis for Message Size:

 Algorithm use two types of messages: Election Message and Leader

Message.

* Election message composed of:

 Message type needs 1 bit

 Phase 2 bits

 Step Log(Log(N)) bits

 Winner ID Log N bits

www.manaraa.com

77

 Winner Position Log N bits

The election message length is:

 Total : 2Log N + Log(Log (N)) + 3 = O Log N Bits

* Leader Message Composed of:

 Message type needs 1 bit

 Phase 2 bits

 Step Log(Log(N)) bits

 Leader ID Log N bits

 Leader Position Log N bits

Total : 2Log N + Log(Log (N)) + 3 = O Log N Bits

5.2.1.3 Contention Free.

We can prove that the algorithm is a contention free if the nodes do not

send more than one message through the same link at the same time.

Theorem 5: The algorithm does not allow any two messages through

the same link at the same time.

Proof:

 In any time step, each link is used by one message only as follows:

Phase one: in this phase no link is used more than one time. Node use one

link to send election message to its neighbor and do not send this message

again through the same link.

 Phase two: in all to one reduction there is no contention because participant

link used to pass one message only.

www.manaraa.com

78

Phase three: broadcasting is the same as reduction all to one each step uses

different links and no more than one message in the same link in the same

step.

 Therefore no contention will take place within the algorithm phases.

5.2.1.4 Comparison with Previous Algorithms.

 Four election algorithms in hypercube were reviewed. The first was by (Gerard,

1993), the second was by (Flocchini and Mans, 1996), the third algorithm was by

(Dobrev and Ruzecka,1997) and the fourth was by (Castorino and

Ciccarella,1999) . The proposed algorithm in this dissertation is better in time

steps using O(Log(N)) steps over the whole algorithm. Gerard algorithm uses

O(Log2N) and Flocchini and Mans algorithm uses Θ(Log3N). Dobrev and

Ruzecka algorithm was proposed in 1997 . This algorithm focused on number of

messages and ignored the time steps to get (N (LogLog(N))) message

complexity. Castorino and Ciccarella in 1999 use Log(N) Steps, when only one

node detect the failure and they didn’t take the worst case of the algorithm. The

message size is better in Gerard algorithm where all the others are the same.

Table-1 views the differences between proposed algorithm and the previous

works:

www.manaraa.com

79

Table-1 Comparison between proposed and previous algorithms

Algorithm Number of
Messages

Time Steps Message Size
/bits

Year

Proposed algorithm O(N) O(Log(N)) 2Log N +
Log(Log (N)) + 3

2006

Flocchini and Mans Ω(N) Θ(Log3N) 3LogN
+Log(Log(N))

1996

Gerard O(N) O(Log2N) O(Log(Log(N)) 1993

Dobrev and Ruzecka O(NLogLog(N)) Not computed Not Computed 1997

Castorino and Ciccarella O(N) O(Log(N)) 3LogN 1999

5.2.2. Leader Election Algorithm in Hypercube Network with

the Presence of One Link Failure

 We analyze the algorithm by computing the number of messages and time

steps. This analyses takes two ways. The first one is simple case when the failure

is detected by one node. The second way is, when the leader failure is detected

by a subset of nodes reaching in the worst case to (N-1) at the same time.

5.2.2.1 Simple Case:

 Simple case is when the algorithm is started by one node that aware

of leader failure.

 Theorem 6: The number of messages needed to complete the algorithm

is at most O(N) messages.

Proof:
 To find the number of messages, we compute it for each phase, then calculate

the total over all algorithm.

www.manaraa.com

81

Phase One:

 During this phase the algorithm uses three types of messages: election

messages where each node receives one message except the first node. The

number of election messages is equal (N-1). This is as shown in Equation (11).

 1 - N
2

N
 4 2 1

1

0
2  





LogN

i

i
 (11)

 The second type is the authentication message which starts from step 2,

where each node sends one authentication message until the end of this phase.

The total number of messages from this type is (N-2) messages. This is as shown

in Equation (12).

 2
2

 N
 4 2

1

1
2  





N
LogN

i

i
 (12)

 The third type is the acknowledgement message. Each node when it

receives the authentication message sends an acknowledge message except in

the last step. The number of acknowledgement messages is (N/2 –2). This is as

shown in Equation (13).

 2 -
2

N

4

N
 4 2

2

0
2  





LogN

i

i
 (13)

 If there is a link failure we need one message to inform the previous node

about the election. So the total messages for phase one is in Equation (14).

 4-
2

N
5 1 2)-

2

N
(2)-(N 1)-N ( (14)

 Phase Two: As explained in the description of phase 2 the nodes start the

reduction node to conclude the result in one node. Half of the participant nodes

in phase 2 send two messages for each. One message to avoid the probability of

www.manaraa.com

81

 link failure and the second to go on the reduction process. This process is valid

until the result becomes inside 4 nodes. Then the algorithm needs 6 messages

to obtain the leader ID in one node. This shown in Equation (15).

Phase Three: Broadcast needs N-1 messages, since each node receives one

leader message except the initiator. This shown in Equation (16).

 MessagesN
N NLog

i

i 12
2

8421
1)(

0
 




 (16)

To cover the probability of link failure we need (N-2) Messages as in Equation

(17).

MessagesN
nLog

i

i 22
2

N
 8 4 2

1)(

1
 




 (17)

 If there is a link failure we need another message so the number of messages

for phase three is as in Equation (18).

 Messages 1-2N 1 2)-(N 1)-N ( (18)

 Total : From equations 14,15,18 the total number of messages over all the

algorithm is :

 Messages O(N) 10 -)
2

N
(11 1) -2(N) 2-(N) 4-

2

N
(5  (19)

 Theorem 7: The election algorithm in the hypercube becomes stable with

a new leader by O(Log(N)) steps .

(15) Messages 2-N 6 4)-
2

N
 2(

 62 2 644
8844

2)(

2



 




iNLog

i

NNNN


www.manaraa.com

82

 Proof:

 To find the total time steps we compute the time steps for each phase and

then add the results to find it overall the algorithm.

 Phase One: Reducing the nodes containing the leader ID to the half nodes

of the model needs Log(N) time steps.

 Step 1: node detect the failure sends the election

message to the node differ in the first right bit

needs one time step, no need for the

authentication and the acknowledgement.

 Step 2 to Log(N) : each step needs 3 time steps, first for

election message, second for the authentication

message and third for the acknowledgement.

 The last step doesn’t need the acknowledgment. The total

as shown in Equation (20).

 Steps Log(N)3 31-3(Log(N)1)1  (20)

 Phase Two: this phase continues the election process with (d-1) dimensional

hypercube with all its nodes aware of the election and have the result from the

first phase. The first stage of this phase needs three time steps: two steps for

the exchange and one for reduction step. Phase two needs (3(Log(N) -3))steps

, and three steps for the two dimensional hypercube. Time steps in phase two

as shown in Equation (21). Steps 6- 3Log(N) 3) 3- 3(Log(N) 

(21)

www.manaraa.com

83

 Phase Three: Broadcasting (One-To-All), the leader message in hypercube

needs Log(N) time steps. In the case of link failure the algorithm needs another

two time steps to inform the unreachable node as described above. Phase three

needs (Log(N) + 2) steps.

The time steps over all the algorithm is the result of Equation (22).

Steps (Log(N)) O 7- 7LogN 2 Log(N) 6- 3Log(N) Log(N)3 3  (22)

5.2.2.2.Worst Case:

 Worst case is when the algorithm is started by (N-1) nodes that detect

leader failure.

 Theorem 8: The number of messages needed to complete the

algorithm, in the worst case, is at most O(N Log(N)) messages.
Proof:

 To find the number of messages, we compute them for each phase, and then

calculate the total over the entire algorithm.

 Phase One: When the failure is detected by all nodes, Each node sends one

message during each election step in the first phase. The algorithm needs

(Log(N)) election step so the number of messages during the election steps is (N

Log(N)) messages. The number of authentication and acknowledgement

messages adaptive depends on the number of nodes that detect the error. But in

any case it does not exceed (N) messages. The total number of messages does

not exceed (3N Log (N)) messages.

 Phase Two: As explained in the description of phase 2 the nodes start the

reduction process to conclude the result in one node. Half of the participant

www.manaraa.com

84

nodes in phase 2 send two messages for each. One message to avoid the

probability of link failure and the second to go on the reduction process. This

process is valid until the result becomes inside 4 nodes. Then the algorithm needs

6 messages to obtain the leader ID in one node. This shown in Equation (23).

 Phase Three: Broadcast needs N-1 messages, since each node receives one

leader message except the initiator. This is shown in Equation (24).

 MessagesN
N NLog

i

i 12
2

8421
1)(

0
 




 (24 To cover

the probability of link failure, we need (N-2) Messages as in Equation(25).

MessagesN
nLOg

i

i 22
2

N
 8 4 2

1)(

1
 




 (25)

 If there is a link failure, we need another message; so the number of messages

for phase Three is as in Equation (26).

 Messages 1-2N 1 2)-(N 1)-N ( (26)

 Total : From the time steps in all phases the total number of messages over

all the algorithm is in Equation (27).

messages Log(N)) (N O 1)- (2N 4) - (N 3N(Log(N))  (27)

Theorem 9 In any case the election algorithm in the hypercube become stable

with a new leader by O(Log(N)) steps.

(23) Messages 4-N 6 5)-
2

N
 2(

 62 2 644
8844

2)(

2



 




iNLog

i

NNNN


www.manaraa.com

85

 Proof:

 To find the total time steps, we compute the time steps for each phase and

then add the results to find it overall the algorithm.

 Phase One: Reducing the nodes containing the leader ID to the half nodes of

the model needs 3Log (N) time steps.

 Step 1: node detect the failure sends the election

message to the node differ in the first right bit

needs one time step, no need for the

authentication and the acknowledgement.

 Step 2 to Log(N) : each step needs 3 time steps, first

for election message, second for the

authentication message and third for the

acknowledgement.

 The last step doesn’t need the acknowledgment. The

total as shown in Equation (28).

 Steps Log(N) 31-3(Log(N))1  (28)

 Phase Two: this phase continues the election process with (d-1) dimensional

hypercube with all its nodes aware of the election, and has the result from the

first phase. The first stage of this phase needs three time steps: two steps for

the exchange and one for reduction step. Stage two needs (3(Log(N) -3))steps

, and three steps for the two dimensional hypercube. Time steps in phase two

as shown in Equation (29).

 Steps 6- 3Log(N) 3) 3- 3(Log(N)  (29)

www.manaraa.com

86

 Phase Three: Broadcasting (One-To-All), the leader message in hypercube

needs Log(N) time steps. In the case of link failure the algorithm needs another

two time steps to inform the unreachable node as described above. Phase three

needs (Log(N) + 2) steps.

The time steps over all the algorithm is the result of Equation (30).

Steps (Log(N)) O 4- 7LogN 2 Log(N) 6- 3Log(N) Log(N) 3  (30)

It is obvious that the time step in the worst case is the same as in simple case.

Analysis for Message Size:

 Algorithm use two types of messages : Election Message and Leader

Message.

* Election message composed of:

 Message type needs 1 bit

 Phase 2 bits

 Step Log(Log(N)) bits

 Winner ID Log N bits

 Winner Position Log N bits

The election message length is:

 Total : 2Log N + Log(Log (N)) + 3 = O Log N Bits

* Leader Message Composed of:

 Message type needs 1 bit

 Phase 2 bits

 Step Log(Log(N)) bits

www.manaraa.com

87

 Leader ID Log N bits

 Leader Position Log N bits

Total : 2Log N + Log(Log (N)) + 3 = O Log N Bits

5.3. Simulation

This section explains the simulation for the first algorithm. Before explaining the

simulation the visual basic programming language and its Object Oriented

Programming (OOP) properties will be described.

5.3.1 Programming Language _ Visual Basic 6 (VB6).

 VB6 is a language that provides powerful features such as Object Oriented

Programming, Event Handling, Structured Programming, Graphical User

Interface and much more. The VB6 is an interpreted language using event

programming. It has many objects and tools that make the programming less

difficult. Models and Classes in VB6 can be added to make the program short

and powerful.

5.3.2 Leader Election in Hypercube Simulation

 The node is the main object in our simulation. Each node in the hypercube is

represented as instant of designed class. The class contains buffer, can send

and receive the messages. The routing from source to destination depends on

the number schema that uses the labels of nodes. This numbering schema has

the useful property of the minimum distance between two nodes is given by the

number of bits that are different in two labels. For example nodes 0101 and 1110

are three links apart, since they differ at three bits positions. In Section 5.3.2.1,

www.manaraa.com

88

 the input variables and the results are described. Some cases will be taken as

examples. Analyses for the results of these examples will be introduced. The

section will be started with introduction into how to use the simulation.

5.3.2.1 Introduction to Simulator.

 When the simulation starts, an input box appears. The user needs to enter

the number of process or nodes in the hypercube to be simulated as shown in

Figure-15. It is a must to enter number N such that 2x = N when x is an integer

number. This number can be changed any time from the menu using set

configuration.

 The main screen is shown in figure-16. it shows the simulation

environment which can be described as follows:

1. Menus Bar: which contains the following menus:

- Setting menu: use to establish the configuration for the simulation. Three

choices in this menu:

a- Set configuration: reset or establish the nodes configuration. This is

done automatically in the first run. If the user needs another run, this

option must be used.

Figure-19The first screen in the simulation.

www.manaraa.com

89

b- Leader failure: This option is used to select the number of nodes to

detect the leader failure to start the election process. This number

must be less than the number of nodes in the hypercube.

c- Exit: used to end the simulation.

- View Menu: used to clear screen and to change the back color of the main

screen.

- Run Menu: used to start and stop the simulation.

- Help Menu: used to give information about the programmer and guidance

to use the simulation.

2. Messages box: shows for all messages (time, source, message and

destination).

Figure-21 Simulation main screen

www.manaraa.com

91

This is the blue colored box and it displays any new message during the

simulation run.

3. Buffers list: shows the contents of all buffers in hypercube nodes. This list

is invisible by default, user can show it when press on buffer command.

4. Number of messages: shows the number of messages during the

simulation and total number of messages as the execution is finished.

5. Time Steps: counter compute the current time step the algorithm reaches

and the total time steps when the execution is finished.

6. Commands Buttons. The following commands are found on the main

screen:

a- Start Auto: this Command completes the election algorithm by

executing all steps and gives the final results.

b- Step by Step: this command runs the simulation step by step. Each

step show what happened in one time step.

c- Buffers: when pressed on this command the contents of the buffers

in hypercube are shown in the buffers list.

d- Clear Screen: used to clear the main screen .

e- Exit: to end the simulation and go out from the program.

5.3.2.2. Examples.

 In this sub section three examples are introduced. Example one will show

the execution of the election algorithm in five dimensional hypercube. To explain

the steps and messages, log file is displayed in Table 2. Example two explains

www.manaraa.com

91

 the contents of the log file and nodes buffers during the execution of the

algorithm. Example three executes the algorithm using a large hypercube with

2048 nodes.

Example one:

 When the program starts, user assigns the number of nodes in hypercube. In

this example, assume this number equal (32) as shown in Figure-17

When OK is pressed, the main screen is opened. Before the program is executed,

the number of nodes that detect leader failure must be entered by user. This is

achieved by using setting menu, then leader failure submenu. The number must

be less than the number of hypercube nodes. In this example, assume that this

number equals to (6). The addresses of these nodes are distributed randomly

among the hypercube nodes.

Figure-21 Input the number of Processes Dialog box

www.manaraa.com

92

 The algorithm is ready to start now. User can select step by step command

and the messages that appear on the screen will be as in table-2. In the table,

rows represent messages. Each row represents one message the columns

contain time steps, source nodes, messages and destinations.

Message composed of 15 digits as follows:

- Digit in position 1 represent message type: 0 for election messages, 1 for

broadcasting messages.

- Digits in positions 2-3 represent the phase in the election process.

- Digits in positions 4-5 represent the step inside the phase.

- Digits in positions 6-10 represent candidate ID. In broadcasting messages,

positions 6-10 represent leader ID.

- Digits in positions 11-15 represent candidate position. In broadcasting

messages, positions 6-10 represent leader Position.

Example one explain the messages and time steps needed for the election
process in hypercube with 32 nodes, as shown in Table 2.

Figure-22 Input the number of processes detects the failure Dialog box.

www.manaraa.com

93

 Table-2 Messages in details for example one

Step Source Message Destination

0 4 "001010000500004" 5

0 7 "001010002900007" 6

0 10 "001010001200010" 11

0 0 "001010001600000" 1

0 12 "001010001800012" 13

0 22 "001010002600022" 23

1 0 "001020001600000" 2

1 1 "001020002100001" 3

1 4 "001020000500004" 6

1 5 "001020001900005" 7

1 6 "001020002900007" 4
1 7 "001020002900007" 5

1 10 "001020001200010" 8

1 11 "001020002800011" 9

1 12 "001020001800012" 14

1 13 "001020002700013" 15

1 22 "001020002600022" 20

1 23 "001020002600022" 21

2 0 "001030001600000" 4

2 1 "001030002100001" 5

2 2 "001030003000002" 6

2 3 "001030002100001" 7

2 4 "001030002900007" 0

2 5 "001030002900007" 1

2 6 "001030002900007" 2

2 7 "001030002900007" 3

2 8 "001030001200010" 12

2 9 "001030002800011" 13

2 10 "001030001200010" 14

2 11 "001030002800011" 15

2 12 "001030001800012" 8

2 13 "001030002700013" 9

2 14 "001030001800012" 10

2 15 "001030002700013" 11

2 20 "001030002600022" 16

2 21 "001030002600022" 17

2 22 "001030002600022" 18

2 23 "001030002600022" 19

3 0 "001040002900007" 8

3 1 "001040002900007" 9

3 2 "001040003000002" 10

3 3 "001040002900007" 11

3 4 "001040002900007" 12

3 5 "001040002900007" 13

3 6 "001040003000002" 14

3 7 "001040002900007" 15

In step 0 nodes detect leader

failure start the algorithm. In

this example, There are 6

nodes started the algorithm.

The message in the first line

is as follows:

Step =0.

Source node = 4

"001010000500004" means:

 0: message type is election.

 01: Phase One.

 01: Step One.

 00005: Candidate ID.

 00004: Candidate Position.

Destination = 5.

In step 1, nodes

that aware of the

election send the

election message

through link 2.

In step 2, nodes

that are aware of

the election

process send the

election message

through link 3.

The process is the

same until step 5

www.manaraa.com

94

3 8 "001040001800012" 0

3 9 "001040002800011" 1

3 10 "001040001800012" 2

3 11 "001040002800011" 3

3 12 "001040001800012" 4

3 13 "001040002800011" 5

3 14 "001040001800012" 6

3 15 "001040002800011" 7

3 16 "001040002600022" 24

3 17 "001040002600022" 25

3 18 "001040002600022" 26

3 19 "001040002600022" 27

3 20 "001040002600022" 28

3 21 "001040002600022" 29

3 22 "001040002600022" 30

3 23 "001040002600022" 31

4 0 "001050002900007" 16

4 1 "001050002900007" 17

4 2 "001050003000002" 18

4 3 "001050002900007" 19

4 4 "001050002900007" 20

4 5 "001050002900007" 21

4 6 "001050003000002" 22

4 7 "001050002900007" 23

4 8 "001050002900007" 24

4 9 "001050002900007" 25

4 10 "001050003000002" 26

4 11 "001050002900007" 27

4 12 "001050002900007" 28

4 13 "001050002900007" 29

4 14 "001050003000002" 30

4 15 "001050002900007" 31

4 16 "001050002600022" 0

4 17 "001050002600022" 1

4 18 "001050002600022" 2

4 19 "001050002600022" 3

4 20 "001050002600022" 4

4 21 "001050002600022" 5

4 22 "001050002600022" 6

4 23 "001050002600022" 7

4 24 "001050002600022" 8

4 25 "001050002600022" 9

4 26 "001050002600022" 10

4 27 "001050002600022" 11

4 28 "001050002600022" 12

4 29 "001050002600022" 13

4 30 "001050002600022" 14

4 31 "001050003100031" 15

5 1 "002010002900007" 0

www.manaraa.com

95

5 3 "002010002900007" 2

5 5 "002010002900007" 4

5 7 "002010002900007" 6

5 9 "002010002900007" 8

5 11 "002010002900007" 10

5 13 "002010002900007" 12

5 15 "002010003100031" 14

6 2 "002020003000002" 0

6 6 "002020003000002" 4

6 10 "002020003000002" 8

6 14 "002020003100031" 12

7 4 "002030003000002" 0

7 12 "002030003100031" 8

8 8 "002040003100031" 0

Start Broadcasting

9 0 "103010003100031" 1

10 0 "103020003100031" 2

10 1 "103020003100031" 3

11 0 "103030003100031" 4

11 1 "103030003100031" 5

11 2 "103030003100031" 6

11 3 "103030003100031" 7

12 0 "103040003100031" 8

12 1 "103040003100031" 9

12 2 "103040003100031" 10

12 3 "103040003100031" 11

12 4 "103040003100031" 12

12 5 "103040003100031" 13

12 6 "103040003100031" 14

12 7 "103040003100031" 15

13 0 "103050003100031" 16

13 1 "103050003100031" 17

13 2 "103050003100031" 18

13 3 "103050003100031" 19

13 4 "103050003100031" 20

13 5 "103050003100031" 21

13 6 "103050003100031" 22

13 7 "103050003100031" 23

13 8 "103050003100031" 24

13 9 "103050003100031" 25

13 10 "103050003100031" 26

13 11 "103050003100031" 27

13 12 "103050003100031" 28

13 13 "103050003100031" 29

13 14 "103050003100031" 30

13 15 "103050003100031" 31

Phase Two is

started in time

step 5.

Phase Three is started in time

step 9.

Message type is 1 means

broadcast message.

Step 9: node 0 send leader

message to node 1.

Step 10: nodes 0,1 send

leader message to nodes 2,3

and so until this message is

reached to all nodes in the

hypercube.

www.manaraa.com

96

Example 2 :

 This example shows the contents of the buffers during algorithm steps in addition

to the messages. The size of hypercube is 16 nodes. The number of nodes

detecting a failure is eight nodes. The messages in each step are listed first

followed by the contents of the buffers. Tables from 3 to 13 shows the messages

used and below each table the contents of nodes buffers after each step.

Table-3 Step 0 in example 2

Step Source Message Destination

0 1 "001010000300001" 0

0 11 "001010001300011" 10

0 6 "001010000400006" 7

0 7 "001010001400007" 6

0 13 "001010001200013" 12

0 9 "001010000600009" 8

0 2 "001010000200002" 3

0 5 "001010000900005" 4

"node number 0"
"001010000300001"
"node number 1"
"node number 2"
"node number 3"
"001010000200002"
"node number 4"
"001010000900005"
"node number 5"
"node number 6"
"001010001400007"
"node number 7"
"001010000400006"
"node number 8"
"001010000600009"
"node number 9"
"node number 10"
"001010001300011"
"node number 11"
"node number 12"
"001010001200013"
"node number 13"
"node number 14"
"node number 15"

8 nodes detect the leader failure at

the same time. These nodes send

election messages to neighbors

through link 1. These messages

will reach to destinations buffers.

Nodes 0, 10,7,6,12,8,3 and 4

were received the election

messages

www.manaraa.com

97

Table-4 Step 1 in example 2

Step Source Message Destination

1 0 "001020000700000" 2

1 1 "001020000300001" 3

1 2 "001020000200002" 0

1 3 "001020001100003" 1

1 4 "001020001000004" 6

1 5 "001020000900005" 7

1 6 "001020001400007" 4

1 7 "001020001400007" 5

1 8 "001020000800008" 10

1 9 "001020000600009" 11

1 10 "001020001500010" 8

1 11 "001020001300011" 9

1 12 "001020001200013" 14

1 13 "001020001200013" 15

"node number 0"
"001020000200002"
"node number 1"
"001020001100003"
"node number 2"
"001020000700000"
"node number 3"
"001020000300001"
"node number 4"
"001020001400007"
"node number 5"
"001020001400007"
"node number 6"
"001020001000004"
"node number 7"
"001020000900005"
"node number 8"
"001020001500010"
"node number 9"
"001020001300011"
"node number 10"
"001020000800008"
"node number 11"
"001020000600009"
"node number 12"
"node number 13"
"node number 14"
"001020001200013"
"node number 15"
"001020001200013"

16 nodes that aware of the leader

failure send election messages to

neighbors through link 2. These

messages will reach to destinations

buffers.

Destination buffers that

received the election messages

in step 1.

www.manaraa.com

98

Table-5 Step 2 in example 2

Step Source Message Destination

2 0 "001030000700000" 4

2 1 "001030001100003" 5

2 2 "001030000700000" 6

2 3 "001030001100003" 7

2 4 "001030001400007" 0

2 5 "001030001400007" 1

2 6 "001030001400007" 2

2 7 "001030001400007" 3

2 8 "001030001500010" 12

2 9 "001030001300011" 13

2 10 "001030001500010" 14

2 11 "001030001300011" 15

2 12 "001030001200013" 8

2 13 "001030001200013" 9

2 14 "001030001200013" 10

2 15 "001030001200013" 11

"node number 0"
"001030001400007"
"node number 1"
"001030001400007"
"node number 2"
"001030001400007"
"node number 3"
"001030001400007"
"node number 4"
"001030000700000"
"node number 5"
"001030001100003"
"node number 6"
"001030000700000"
"node number 7"
"001030001100003"
"node number 8"
"001030001200013"
"node number 9"
"001030001200013"
"node number 10"
"001030001200013"
"node number 11"
"001030001200013"
"node number 12"
"001030001500010"
"node number 13"
"001030001300011"
"node number 14"
"001030001500010"

The election process

continues as above

through link 3

Buffers contents after

step 2 in phase 1

www.manaraa.com

99

"node number 15"
"001030001300011"
Table-6 Step 3 in example 2

Step Source Message Destination

3 0 "001040001400007" 8

3 1 "001040001400007" 9

3 2 "001040001400007" 10

3 3 "001040001400007" 11

3 4 "001040001400007" 12

3 5 "001040001400007" 13

3 6 "001040001400007" 14

3 7 "001040001400007" 15

3 8 "001040001500010" 0

3 9 "001040001300011" 1

3 10 "001040001500010" 2

3 11 "001040001300011" 3

3 12 "001040001500010" 4

3 13 "001040001300011" 5

3 14 "001040001500010" 6

3 15 "001040001300011" 7

"node number 0"
"001040001500010"
"node number 1"
"001040001300011"
"node number 2"
"001040001500010"
"node number 3"
"001040001300011"
"node number 4"
"001040001500010"
"node number 5"
"001040001300011"
"node number 6"
"001040001500010"
"node number 7"
"001040001300011"
"node number 8"
"001040001400007"
"node number 9"
"001040001400007"
"node number 10"
"001040001400007"
"node number 11"
"001040001400007"
"node number 12"
"001040001400007"
"node number 13"
"001040001400007"

Messages in step 3

phase 1

Buffers contents after

step 4 in phase 1

www.manaraa.com

111

"node number 14"
"001040001400007"
"node number 15"
"001040001400007"

Table-7 Step 4 in example 2

Step Source Message Destination

4 1 "002010001400007" 0

4 3 "002010001400007" 2

4 5 "002010001400007" 4

4 7 "002010001400007" 6

"node number 0"
"002010001400007"
"node number 1"
"node number 2"
"002010001400007"
"node number 3"
"node number 4"
"002010001400007"
"node number 5"
"node number 6"
"002010001400007"
"node number 7"
"node number 8"
"001040001400007"
"node number 9"
"001040001400007"
"node number 10"
"001040001400007"
"node number 11"
"001040001400007"
"node number 12"
"001040001400007"
"node number 13"
"001040001400007"
"node number 14"
"001040001400007"
"node number 15"
"001040001400007"

Table-8 Step 5 in example 2

Step Source Message Destination

5 2 "002020001500010" 0

5 6 "002020001500010" 4

"node number 0"
"002020001500010"
"node number 1"
"node number 2"

Buffers contents after

step 1in phase 2

Messages in step 1

phase 2

Messages in step 2

phase 2

www.manaraa.com

111

"node number 3"
"node number 4"
"002020001500010"
"node number 5"
"node number 6"
"node number 7"
"node number 8"
"001040001400007"
"node number 9"
"001040001400007"
"node number 10"
"001040001400007"
"node number 11"
"001040001400007"
"node number 12"
"001040001400007"
"node number 13"
"001040001400007"
"node number 14"
"001040001400007"
"node number 15"
"001040001400007"

Table-9 Step 6 in example 2

Step Source Message Destination

6 4 "002030001500010" 0

"node number 0"
"002030001500010"
"node number 1"
"node number 2"
"node number 3"
"node number 4"
"node number 5"
"node number 6"
"node number 7"
"node number 8"
"001040001400007"
"node number 9"
"001040001400007"
"node number 10"
"001040001400007"
"node number 11"
"001040001400007"
"node number 12"
"001040001400007"
"node number 13"
"001040001400007"
"node number 14"

Buffers contents after

step 3 in phase 2

Buffers contents after

step 2 in phase 2

Messages in step 3

phase 2

www.manaraa.com

112

"001040001400007"
"node number 15"
"001040001400007"

Table-10 Step 7 in example 2

Step Source Message Destination

7 0 "103010001500010" 1

"node number 0"
"node number 1"
"103010001500010"
"node number 2"
"node number 3"
"node number 4"
"node number 5"
"node number 6"
"node number 7"
"node number 8"
"001040001400007"
"node number 9"
"001040001400007"
"node number 10"
"001040001400007"
"node number 11"
"001040001400007"
"node number 12"
"001040001400007"
"node number 13"
"001040001400007"
"node number 14"
"001040001400007"
"node number 15"
"001040001400007"

Table-11 Step 8 in example 2

Step Source Message Destination

8 0 "103020001500010" 2

8 1 "103020001500010" 3

"node number 0"
"node number 1"
"node number 2"
"103020001500010"
"node number 3"
"103020001500010"
"node number 4"
"node number 5"
"node number 6"
"node number 7"
"node number 8"
"001040001400007"

Buffers contents after

step 1in phase 3

Buffers contents after

step 2 in phase 3

Messages in step 1

phase 3

Messages in step 2

phase 3

www.manaraa.com

113

"node number 9"
"001040001400007"
"node number 10"
"001040001400007"
"node number 11"
"001040001400007"
"node number 12"
"001040001400007"
"node number 13"
"001040001400007"
"node number 14"
"001040001400007"
"node number 15"
"001040001400007"

Table-12 Step 9 in example 2

Step Source Message Destination

9 0 "103030001500010" 4

9 1 "103030001500010" 5

9 2 "103030001500010" 6

9 3 "103030001500010" 7

"node number 0"
"node number 1"
"node number 2"
"node number 3"
"node number 4"
"103030001500010"
"node number 5"
"103030001500010"
"node number 6"
"103030001500010"
"node number 7"
"103030001500010"
"node number 8"
"001040001400007"
"node number 9"
"001040001400007"
"node number 10"
"001040001400007"
"node number 11"
"001040001400007"
"node number 12"
"001040001400007"
"node number 13"
"001040001400007"
"node number 14"
"001040001400007"
"node number 15"
"001040001400007"

Buffers contents after

step 3 in phase 3

Messages in step 3

phase 3

www.manaraa.com

114

Table-13 Step 10 in example 2

Step Source Message Destination

10 0 "103040001500010" 8

10 1 "103040001500010" 9

10 2 "103040001500010" 10

10 3 "103040001500010" 11

10 4 "103040001500010" 12

10 5 "103040001500010" 13

10 6 "103040001500010" 14

10 7 "103040001500010" 15

"node number 0"
"node number 1"
"node number 2"
"node number 3"
"node number 4"
"node number 5"
"node number 6"
"node number 7"
"node number 8"
"001040001400007"
"103040001500010"
"node number 9"
"001040001400007"
"103040001500010"
"node number 10"
"001040001400007"
"103040001500010"
"node number 11"
"001040001400007"
"103040001500010"
"node number 12"
"001040001400007"
"103040001500010"
"node number 13"
"001040001400007"
"103040001500010"
"node number 14"
"001040001400007"
"103040001500010"
"node number 15"
"001040001400007"
"103040001500010"

The number of messages in example 2 are 76 message and the number of time
steps are 11.

Buffers contents after

step 4 in phase 3. the

Some buffers contains

two messages because

the first was not use in

phase two.

Messages in step 4

phase 3

www.manaraa.com

115

Example 3:

This example shows a leader election in large hypercube with N = 2048, with

diameter equal to 11 and the number of nodes that detects a leader failure are

100. The messages for the algorithm exceed 375 pages so Appendix 2 will show

just step 10 in the algorithm execution.

The results from example 3 are :

 Number of messages = 17338 Time steps = 31

These results ensure that the number of messages does not exceed (O (N)) in

the simple case and (O(NLog(N))) in the worst case. It is also ensures that the

time steps is always the same (O(Log(N))). The results in the simulation are better

than the previous works in time steps and number of messages.

5.3.2.3 Simulation Survey:

The following tables show different states (inputs for the simulation) using two

hypercubes. First table for hypercube with size equal 16 nodes, and the second

with size equal 1024 nodes:

 State 1: Table-14 summaries the inputs and the results when the

simulation was executed using four dimensional hypercube. The first

column lists trial number. Column two contains number of nodes, column

three contains nodes that detect leader failure, and column 4 and 5 contain

simulation results (number of messages and time steps). Ten trails were

recorded as follows:

www.manaraa.com

116

 Table-14 Simulation inputs and results for different states when N = 16

trial

Number of Nodes detect failure

messages
time
steps Number nodes

1 1 4 37 11

2 15 8,7,11,13,0,15,2,10,4,1,5,12,6,14,3 85 11

3 5 14,11,12,6,7 63 11

4 7 1,5,13,11,8,9,4 71 11

5 3 4,12,10 59 11

6 4 11,12,7,5 62 11

7 2 13,12 38 11

8 7 2,1,5,10,7,6,11 67 11

9 8 5,4,3,13,12,6,9,11 74 11

10 6 14,12,6,1,11,9 72 11



 State 2: Table-15 summaries the inputs and the results when the

simulation was executed using ten dimensional hypercube. As in state 1.

The first column lists trial number. Column two contains number of nodes,

column three contains nodes that detect leader failure, and column 4 and

5 contain simulation results (number of messages and time

steps). Ten trails were recorded as follows:

Table-15 Simulation inputs and results for different states when N = 1024

trial

Number of Nodes detect failure

messages time steps Number nodes

1 1 154 2557 29

2 100 large number 8654 29

3 5 582,977,228,852,716 4601 29

4 10 589,699,171,486,675 5300 29

5 1023 large number 11773 29

www.manaraa.com

117

6 1000 large number 11750 29

7 2 492,318 2812 29

8 20 large number 6428 29

9 50 large number 7610 29

10 3 300,200,112 3323 29

It can be seen from the previous tables that:

- Time steps are fixed for the leader election process in hypercube,

regardless the number of nodes detecting the failure.

- On the other hand the number of messages is affected by the number of

nodes detect the failure. Figure-19 shows that it increases as the number

of nodes increases.

Figure-23 Relation between number of nodes detect failure and number of messages

N = 1024

0

5000

10000

15000

Nodes

M
e
s
s
a
g

e
s

Messages 2557 2812 3323 4601 5300 6428 7610 8654 11750 11773

1 2 3 5 10 20 50 100 1000 1023

www.manaraa.com

118

 From Figure-19 it can be seen that the number of messages are low when the

leader failure is detected by one node only. It is also obvious that the number of

messages increase drastically as the number of node detecting a leader failure

is more than one node.

5.4 Conclusion.

 Chapter Five introduces a performance evaluation, and simulation program

to validate the proposed algorithms. This chapter computed the number of

messages and time steps needed by the algorithms to elect a new leader. The

summations of the number of messages and time steps were represented by big

(O) notation. When the hypercube size is (N) nodes, it uses (O(N)) messages

within (O(Log(N))) time steps to solve the problem when the failure is detected by

one node in the simple case. In the most complicated case, when failure is detected

by (N-1) nodes, the problem is solved with (O (N Log (N))) messages within

(O (Log (N))) time steps.

This chapter also presented a simulation program to validate the first algorithm.

It proves that time steps are fixed for the leader election process in hypercube,

regardless the number of nodes detecting the failure. On the other hand the

number of messages is affected by the number of nodes that detects the failure.

The number of messages increases relationally as the number of nodes

increases. Details for the dissertation Results will be presented in the next

chapter.

www.manaraa.com

119

CHAPTER SIX

CONCLUSIONS AND FUTURE WORKS

6.1 Introduction.

 This work presents two distributed solutions to the leader failure problem

in Hypercube networks. The first solution is a distributed algorithm to elect a new

leader in hypercube with minimum number of messages and time steps. The

second solution is a leader election algorithm with the presences of one link

failure. This algorithm solves the leader failure even when there is one link failure.

This chapter concludes the dissertation and presents comparisons with previous

work. It provides analyses for the simulation results for the first algorithm. Future

work will be explained in the last section.

6.2 Results.

 In this work, complexity analysis was used to evaluate performance for the

algorithms. The number of messages and time steps are the main factors for

performance evaluation. The total number of messages and the total time steps

were founded for each algorithm. These totals were translated to big O notation

to express the complexity.

 This section summarizes the steps of the proposed algorithms and gives the

results.

6.2.1 Results of the First Algorithm.

 The first algorithm consists of three phases. Each phase has a number of

time steps and messages. Phase one is initiated when one or more nodes

www.manaraa.com

111

detects the leader failure, this initiates an election process. This phase reduces

the numbers of participated nodes in the election process to N/2 nodes who are

aware of the election. The second phase uses the reduction all-to-one

communication operation (with the comparison process in each step) to have

the result in one node. Finally, in the third phase, this node broadcasts the

leader message to all nodes in the hypercube using broadcast one-to-all

communication operation.

 Algorithm performance was evaluated by calculating the number of

messages and time steps for the three phases. When the hypercube size is N

nodes, it uses (O(N))messages within (O(Log(N))) time steps to solve the problem

when the failure is detected by one node in the simple case. In the most complicated

case, when failure is detected by (N-1) nodes, the problem is solved with (O(N

Log(N))) messages within (O(Log(N))) time steps.

6.2.2 Results of the Second Algorithm.

 This algorithm consists of three phases. Each phase has many steps

and messages. Phase one is initiated when one or more nodes detect a leader

failure, It initiate the election process. This phase reduces the count of

participated nodes in the election process to N/2 nodes aware of the election. In

phase one, this algorithm considered the probability of the presence of one link

failure. The second phase uses the reduction all-to-one communication

operation “with additional steps to tolerate link failure” to have the result in one

www.manaraa.com

111

 node. Finally, in the third phase, this node broadcasts leader message to all

nodes in the hypercube using broadcast one-to-all communication operation,

“with additional steps to tolerate link failure”.

 Algorithm performance was evaluated by calculating the number of

messages and time steps for the three phases. It uses O(N) messages within

O(Log(N)) time steps to solve the problem when the failure is detected by one

node in the simple case. In the most complicated case when failure is detected

by N-1 nodes the problem is solved with O(N Log(N)) messages within

O(Log(N)) time steps.

6.4 Simulation Results.

 This work presented a simulation program that showed the application of the

first algorithm. Many trials and examples were made using this simulation. Trials

and its results were analyzed and explained. The following notes summarize the

simulation results:

- Time steps are fixed for the leader election process in hypercube,

regardless of the number of nodes detecting the failure.

- On the other hand the number of messages is affected by the number of

nodes that detected leader failure. The number of messages increases as

the number of nodes that detect leader failure increases.

www.manaraa.com

112

 6.5 Comparison between the Proposed Algorithm and

Previous Works.

 Four election algorithms in hypercube were reviewed. Our algorithm is better

in time steps using (O(Log(N))) steps over the whole algorithm. The Gerard

algorithm uses (O(Log2N)) steps. Flocchini and Mans algorithm uses

(Θ(Log3N)) steps. Castorino and Ciccarella in 1999 use Log(N) Steps, when

only one node detect the failure and they didn’t take the worst case of the

algorithm. Dobrev and Ruzecka didn’t concentrate or calculate the time steps.

The Dobrev and Ruziicka algorithm focused on a number of messages and

ignored the time steps to get (NLogLog(N)) message complexity. The message

size is better in Gerard algorithm where all the others are the same. Table-16

explains the differences between proposed algorithm and the previous works:

 Table-16 Comparison between proposed and previous algorithms

Algorithm Number of
Messages

Time Steps Message Size /bits Year

Proposed algorithm O(N) O(Log(N)) 2Log N + Log(Log (N))
+ 3

2006

Flocchini and Mans Ω(N) Θ(Log3N) 3LogN +Log(Log(N)) 1996

Gerard O(N) O(Log2N) O(Log(Log(N)) 1993

Dobrev and Ruzecka O(N(Log(Log(N)))) Not
computed

 Not Computed 1997

Castorino and
Ciccarella

O(N) O(Log(N)) 3LogN 1999

www.manaraa.com

113

6.6 Future Works.

 For Future Work, the work presented can be improved by carrying out the

following:

- Design algorithm to solve the leader failure in meshes networks with the

presence of link failure.

- Design an algorithm to solve leader failure in hypercube when the ID is not

distinguished

- Design algorithm to solve the leader failure in trees networks with the

presence of link failure.

- Write a survey of all election algorithms for each topology.

- Change the environment for meshes and other topologies to work under

wireless communications.

Publications:
Ajluni N., Refai, M.,(2006), Leader Election Algorithm in Hypercubes with

the Presence of One Link Failure, The 2006 International Conference on

Parallel and Distributed Processing Techniques and Applications(PDPTA'06:

Jun 26-29, Las Vegas, USA.

Refai, M., Ajluni N., (2006), New Leader Election Algorithm in Hypercubes

with Minimum time steps and number of messages, European University of

Lefke, 4th FAE International Symposium, Gemikonag, TRNC , 30 November- 1

December.

www.manaraa.com

114

References

Abu-Amara, H. and Lokre, J.(1994) Election in Asynchronous Complete

Networks with Intermittent Link Failures, IEEE Transactions on Computers,

Vol. 34 No. 7, July , pp. 778-788.

Abu-Amara, H., (1988), Fault- Tolerant Distributed Algorithm For Election in

Complete Networks, IEEE Transaction on Computers, 37 v4: PP 449-453.

Afek Y. and Gafni E. ,(1991), Time and Message Bounds for Electing in

Synchronous and Asynchronous Complete Networks, SAIM Journal on

Computing, 20 v 2 : PP 376-394.

Antonoiu, G. and Srimani, K.(1996)A Self-Stabilizing Leader Election

Algorithm for Tree Graphs, Journal of Parallel and Distributed Computing, 34,

Article No. 0059, pp. 227-232.

Castorino A. and Ciccarella G.,(1999), Optimal-Election Algorithms for

Hypercube, Seventh Euromicro Workshop on Parallel and Distributed

Processing p. 221, 1999.

Christof F.,Flaviv C., (1999), A Highly Available Local Leader Election

Service, IEEE Transaction of Software Engineering.

Ciccarella G. and Patricelli, (1994), A Distributed System Architecture for

Embedded Control Systems, Proc. Of Euromicro Workshop on Parallel and

Distributed Processing, Malaga: PP 392-399, IEEE Computer Society Press.

Culler, E. Singh, P. and Gupta, A. (1999) Parallel Computer Architecture A

Hardware/Software Approach, Morgan Kaufmann Publisher, Inc,.

Deitel and Deitel ,Nieto,T.R.,(1999). Visual Basic 6,Prentice Hall, New Jersey

07458, USA.

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/pdp/&toc=comp/proceedings/pdp/1999/0059/00/0059toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/pdp/&toc=comp/proceedings/pdp/1999/0059/00/0059toc.xml

www.manaraa.com

115

Devillers M., Griffioen D., Romijn J. and Vaandrager F., (2004) , Verification of

Leader Election Protocol, Formal Method Applied to IEEE 1394, Springer

International journal on Software Tools for Tecknology Transfer(STTT),

December 2004.

Dobrev S. and Ruzicka P.., (1997) Linear Broadcasting and N Log Log(N)

Election in Unoriented Hypercube. Institute of Informatics, Faculty of

Mathematics and Physics, Comenius university, Slovak Republic.

Dolev S., Israeli A. and Moran S., (1997), Uniform Dynamic Self-Stabilizing

Leader Election, IEEE Transaction on Parallel and Distributed Systems, VOL

8,NO.4, April .PP 424-440.

Duato, J. Yalamanchili, S. and Ni, L. , (1997) Interconnection Networks an

Engineering Approach, IEEE Computer Society, The Institute of Electronic

Engineers, Inc, Los Alamitos, California.

Fetzer, C., Raynal, M., and Tronel, F.(2000) . A Failure Detection Protocol

Based on A Lazy Approach, Research Report 1367, IRISA, November.

Flocchini, P. and Mans, B. (1996).Optimal Elections in Labeled Hypercube,

Journal of Parallel and Distributed Computing 33, Article No. 0026, pp. 76-83.

Fokkink .W and Jun Pang, (2004) Simplifying Itia-Rodeh Leader Election for

Anonymous Ring, Vrije University, Amsterdam.

Foster I.(1994).Designing and Building Parallel Programs, Addison-Wesley

Publishing Company, USA.

Fredrickson, N., and Lynch, N.,(1987).Election a Leader in Asynchronous

Ring, Journal of the ACM, Vol.34, PP. 98.-115.

www.manaraa.com

116

Gerard ,T.,(1993). Linear Election for Oriented Hypercube, Technical Report

TR-RUU-CS-93-39, Department of computer Science, Utrecht University, The

Netherlands.

Garcia- Molina, H ,(1982) , Electing in a Distributed Computing Systems,

IEEE Trans. Comp. ,Vol 31, No.1,PP.48-59,jan 1982.

Jean-Franqois Marckert (2005), Quasi-Optimal Leader Election Algorithms

in Radio Network with Log-Logarithmic Awake Time Slots,

F.chyzak(ed.),INRIA,pp.97-00.

Junguk L. and Geneva G., (1996), A Distributed Election Protocol for

Unreliable Networks, Journal of Parallel and Distributed Computing, 35, PP

35-42.

Kumar V., Grama A., Gupta A. and Karypis G. (2003), Introduction to Parallel

Computing, The Benjamin/Cumminy Publishing Company, Inc, Redwood City,

California.

Larrea M., Ar´evalo S., and Fern´andez A.(1999), Efficient Algorithms to

Implement Unreliable Failure Detectors in Partially Synchronous Systems.

In Proceedings of the 13th International Symposium on Distributed

Algorithms(DISC99), pages 34–48,

Bratislava, September.

Larrea M., Fernandez A., and Arevalo S.,(2000), Optimal Implementation of the

Weakest Failure Detector for Solving Consensus. In Proceedings of the 19th

IEEE Symposium on Reliable Distributed Systems, SRDS 2000, pages 52–59,

Nurenberg, Germany, October.

www.manaraa.com

117

Larrea, M., Fernandez A., and Arevalo S.(2000) Eventually Consistent Failure

Detectors. In Brief Announcement the 14th International Symposium on

Distributed Algorithms(DISC00), Toledo, October.

Leeuwen, J. and Tan, R.,(1987), An Improved Upper bound for Distributed

Election in Bidirectional Rings of Processors, Distributed Computing, 2 , PP

149-160.

Levitin A., (2003), Introduction to The Design and Analysis of Algorithms,

Addison Wesley Company, USA.

Mattern, F. ,(1989), Message Complexity of Simple Ring-Based Election

Algorithms – An Empirical Analysis, in IEEE 9th Int. Conf. Distributed

Computing Syst. PP 94-100.

Michel R., (1985), Distributed Algorithms And Protocols, John Wiley & sons

Publishing Company, New York,

Molina G, H., (1982).Elections in A Distributed Computing systems, IEEE

Transactions on Computers, Vol. 31 Jan , pp. 48-59.

Mostefaoui A. and Raynal M.,(2000), Leader-Based Consensus. Research

Report 1372, IRISA, December.

Navneet M., Jennifer L., Welch, Nitin V., (2001), Leader Election Algorithms

for Mobile Ad Hoc Networks, Supported in Part by NSF grant CCR-9972235.

Ostrovsky, R., Rajagoplan, S., and Vazirani, U.,(1994), Simple and Efficient

Leader Election in the Full Information Model. In Proceedings of the Twenty-

Sixth Annual

ACM Syposium on Theory of Computing.

Power H.., (1999), Algorithms and Application in Parallel Computing, WIT

Press/Computational Mechanics Publications, USA.

www.manaraa.com

118

Quinn, J.,(1994) Parallel Computing Theory and Practice, 2nd Edition,

McGrow-Hill, Inc.

Raynal, M.,(1984), Distributed Algorithms and Protocols, John Wesley and

Sons, New York USA.

Refai M. and Ababneh E., (2002) Leader Election Algorithm in 3D Torus

Networks, Master Theses, Al-Albayet University – Jordan.

Richard E. and Kumarss N.,(2004), Foundations of Algorithms Using

Java PseudoCode, Jones and Bartlett Publishers,Canada.

Russell, A., Saks, M., and Zuckerman, D.,(1999) Lower Bounds For Leader

Election And Collective Coin-Flipping In The Perfect Information Model. In

Proceedings of the Symposium on the Theory of Computing (STOC).

Russel, A. and Zuckerman D., 1998, Perfect Information Leader Election In

Log*N + O(1) Rounds, In Proceedings of 39th Annual Symposium on

Foundations of Computer Science (FOCS).

Schneider, M. (1993), Self-Stabilization, ACM Comput. Surveys 25(1),45-67,

mar.

Shrira, L. and Goldreich, O. , (1987) , Electing a Leader in a Ring with Link

Failure, ACTA Information, 24, PP 79-91.

Singh G., (1996). Leader Election in the Presence of Link Failures, IEEE

Transactions on Parallel and Distributed Systems, VOL 7,No 3,March.

Singh, G., (1991), Efficient Distributed Algorithms for Leader Election in

Complete Networks, 11th IEEE Int. Conf. on Distributed Computing Systems,

PP 472-479.

www.manaraa.com

119

Singh G., (1997), Efficient Leader Election Using Sense of Direction,

Department of Computing and Information Sciences, Kansas State University,

Manhatten, KS66506.

Tanenbaum, A., (2002). Distributed Systems, Prentice-Hall International, Inc,

New Jersey.

Tanenbaum, A., (1995)., Distributed Operating Systems, Prentice-Hall

International, Inc, New Jersey.

Valerie, K. Jared, S. Vishal, S. and Erik, V. ,(2001), Scalable Leader Election,

SODA, January 22-26, Miami, FL

Vos T.E.J. UNITY in Diversity,(2000) A Stratified Approach to Verification of

Distributed Algorithms. PhD thesis, Utrecht University.

Yamshita M. and Kammeda T.,(1999), Leader Election Problem on Networks

in which Processor Identity Numbers are not Distinct, IEEE Transactions on

Parallel and Distributed Systems, VOL 10,No 9,September.

www.manaraa.com

121

APPENDICES

Appendix 1
Simulation code:

1- Main Program Code

Option Explicit
Dim node() As New vertices

Private Sub about_Click(Index As Integer)
 form2.Show
End Sub

Private Sub Blue_Click(Index As Integer)
 Me.backcolor = vbBlue
End Sub

Private Sub CLS_Click(Index As Integer)
 CLS
End Sub
Private Sub cmdcls_Click()
 CLS
End Sub

Private Sub CMDExit_Click()
End
End Sub

Private Sub CMDstep_Click()
 Timer1.Enabled = True
 step = True
End Sub

Private Sub def_Click(Index As Integer)
 Me.backcolor = &H8000000F
End Sub

Private Sub Nodes_status_Click()
Dim i%
Print
 Print Tab(5); " normal"; Tab(13); "leader ID"; Tab(23); "leader_pos"; Tab(35); "l_phase"
_
 ; Tab(45); "l_step"; Tab(55); "my pos"; Tab(65); "my id"; Tab(75); "C_ID"; Tab(85);
"C_pos"; " phase 2 finished"

 Print Space(10); String(75, "_")

www.manaraa.com

121

 For i = 0 To N - 1

 Print Tab(5); node(i).normal;
 Print Tab(13); node(i).leader_id;
 Print Tab(23); node(i).leader_pos;
 Print Tab(35); node(i).local_phase;
 Print Tab(45); node(i).local_step;
 Print Tab(55); node(i).my_pos;
 Print Tab(65); node(i).my_id;
 Print Tab(75); node(i).candidate_id;
 Print Tab(85); node(i).candidate_pos;
 Print Tab(105); node(i).phase2done;
 Print Tab(115); node(i).end_after_phase
 Next
End Sub

Private Sub CStart_Click()
 Timer1.Enabled = Not Timer1.Enabled
 step = False
End Sub
Private Sub Cbuffer_Click()
Dim i%, j%, message$, msg$

Open "D:\Documents and Settings\mohammed\Desktop\hh" For Output As #1
List2.Clear

 List2.Visible = True

 For i = 0 To N - 1

 msg = "node number " & node(i).my_pos
 List2.AddItem (msg)

 node(i).show_buffer
 Next i
 For j = 0 To List2.ListCount - 1
 Write #1, List2.List(j)
 Next j
 Close #1
End Sub
Private Sub Exit_Click(Index As Integer)
End
End Sub
Private Sub Form_Load()
 configration
 Me.Move (Screen.Width / 2) - (Me.Width / 2), (Screen.Height / 2) - (Me.Height / 2)
End Sub
Private Sub LFAILURE_Click(Index As Integer)
 Dim ff As Integer
30 ff = InputBox("enter the number of process that detect failure")
 If ff > N Then MsgBox ("rong number tryagain"): GoTo 30

www.manaraa.com

122

 leader_failure (ff)
End Sub

Private Sub Orange_Click(Index As Integer)
Me.backcolor = &H80C0FF
End Sub

Private Sub Red_Click(Index As Integer)
 Me.backcolor = vbRed
End Sub

Private Sub setconfigration_Click(Index As Integer)
configration

End Sub

Private Sub configration()
Randomize
 Open "D:\Documents and Settings\mohammed\Desktop\tt" For Output As #1
 Close #1
 step = False
 time_step = 0
 Lnumberofmessage.Caption = ""
 ltimesteps.Caption = ""

 Dim x#, i%, j%, bb%, r%, flag As Boolean, B As Boolean

 Do
 x = InputBox("Enter the Number of processes", "setting", "16")
 B = Fix(Log(x) / Log(2)) < (Log(x) / Log(2))
 If B Then
 MsgBox ("not correct")
 Else
 N = x
 d = Log(N) / Log(2)
 ReDim node(N)

 End If
 Loop While B

 ReDim node(N)
 For i = 0 To N - 1
 j = -1
 r = Int(((N) * Rnd()) + 1)
 Do Until j = i
 If r = node(j + 1).my_id Then
 r = Int(((N) * Rnd()) + 1)
 j = -1
 Else
 j = j + 1

www.manaraa.com

123

 End If

 Loop
 node(i).my_id = r
 If r = N Then leader_pos = i
 Next i
 For i = 0 To N - 1

 bb = i
 ppp = False
 node(i).normal = True
 node(i).leader_id = N
 node(i).leader_pos = leader_pos
 node(i).local_phase = 0
 node(i).local_step = 0
 node(i).my_pos = i
 node(i).candidate_id = 0
 node(i).candidate_pos = 0
 For j = 1 To d

 node(i).bin = node(i).bin & (bb Mod 2)
 bb = bb \ 2
 Next j
 node(i).bin = Format(StrReverse(node(i).bin), String(d, "0"))

 Next i
 number_of_message = 0
End Sub

Private Sub start_Click(Index As Integer)
 Timer1.Enabled = Not Timer1.Enabled
End Sub

Private Sub stop_Click()
 Timer1.Enabled = Not Timer1.Enabled
End Sub

Private Sub Timer1_Timer()
 Dim i%, arc%, message$, dist%, j%, phase3step%, msg As String, mm As String
 List2.Visible = False
 ltimesteps.Caption = time_step
 Open "D:\Documents and Settings\mohammed\Desktop\tt" For Append As #1
 For i = 0 To N - 1
 If Not node(i).isempty Then
 If ppp And i >= N / 2 Then GoTo 20
 Do Until node(i).isempty Or node(i).read_btime = time_step
 message = node(i).read_buffer
 node(i).leader_id = -1
 node(i).leader_pos = -1
 node(i).local_phase = Val(Mid(message, 2, 2))
 If node(i).local_step <= Val(Mid(message, 4, 2)) Then
 node(i).local_step = Val(Mid(message, 4, 2))

www.manaraa.com

124

 If node(i).candidate_id < node(i).my_id Then
 node(i).candidate_id = node(i).my_id
 node(i).candidate_pos = node(i).my_pos
 End If
 If node(i).candidate_id < Val(Mid(message, 6, 5)) Then
 node(i).candidate_id = Val(Mid(message, 6, 5))
 node(i).candidate_pos = Val(Mid(message, 11, 5))
 End If
 If node(i).local_step = d And node(i).local_phase = 1 Then
 node(i).local_step = 1
 node(i).local_phase = 2
 If i < N / 2 Then ppp = True
 If Mid(node(i).bin, (d - node(i).local_step) + 1) = "1" And Not
node(i).phase2done Then
 dist = finddis(i, node(i).local_step)
 message = Format(0, "0") & Format(node(i).local_phase, "00") &
Format(node(i).local_step, "00") & Format(node(i).candidate_id, "00000") &
Format(node(i).candidate_pos, "00000")
 Call node(dist).add(message, time_step)
 ' Print node(i).my_pos; "send "; message; "to"; dist
 Write #1, time_step; " "; node(i).my_pos; "send "; message; "to";
dist
 mm = node(i).my_pos
 msg = time_step & Space(10) & node(i).my_pos & Space(11 -
Len(mm)) & "send" & Space(10) & message & Space(10) & "to" & Space(10) & dist
 List1.AddItem (msg)
 node(i).phase2done = True

 End If
 GoTo 20
 End If

 End If
 If node(i).local_phase = 3 Then
 node(i).leader_id = node(i).candidate_id
 node(i).leader_pos = node(i).candidate_pos
 End If
 Loop

 End If
 If node(i).local_phase = 1 Then
 If node(i).local_step = d Then

 If node(i).candidate_id < node(i).my_id Then
 node(i).candidate_id = node(i).my_id
 node(i).candidate_pos = node(i).my_pos
 End If
 If node(i).candidate_id < Val(Mid(message, 6, 5)) Then
 node(i).candidate_id = Val(Mid(message, 6, 5))
 node(i).candidate_pos = Val(Mid(message, 11, 5))
 End If

www.manaraa.com

125

 Else

 node(i).local_step = node(i).local_step + 1
 If node(i).local_step = d And i >= N / 2 Then
 node(i).end_after_phase = True
 End If
 message = Format(0, "0") & Format(node(i).local_phase, "00") &
Format(node(i).local_step, "00") & Format(node(i).candidate_id, "00000") &
Format(node(i).candidate_pos, "00000")
 arc = CInt(node(i).local_step)
 dist = finddis(i, arc)
 Call node(dist).add(message, time_step)
 ' Print node(i).my_pos; "send "; message; "to"; dist
 Write #1, time_step; " "; node(i).my_pos; "send "; message; "to"; dist
 mm = node(i).my_pos
 msg = time_step & Space(10) & node(i).my_pos & Space(11 - Len(mm))
& "send" & Space(10) & message & Space(10) & "to" & Space(10) & dist
 List1.AddItem (msg)
 End If
 End If

 If node(i).local_phase = 2 And Not node(i).phase2done Then
 node(i).local_step = node(i).local_step + 1
 If node(i).local_step = d Then
 node(i).local_phase = 3
 node(i).local_step = 1
 node(i).leader_id = node(i).candidate_id
 node(i).leader_pos = node(i).leader_pos
 dist = finddis(i, node(i).local_step)

 message = Format(1, "0") & Format(node(i).local_phase, "00") &
Format(node(i).local_step, "00") & Format(node(i).candidate_id, "00000") &
Format(node(i).candidate_pos, "00000")
 Call node(dist).add(message, time_step)
 ' Print node(i).my_pos; "send "; message; "to"; dist
 Write #1, time_step; " "; node(i).my_pos; "send "; message; "to"; dist
 mm = node(i).my_pos
 msg = time_step & Space(10) & node(i).my_pos & Space(10) & "send" &
Space(10) & message & Space(10) & "to" & Space(10) & dist
 List1.AddItem (msg)
 GoTo 20

 End If

 If Mid(node(i).bin, (d - node(i).local_step) + 1, 1) = "1" And Not
node(i).phase2done Then

 dist = finddis(i, node(i).local_step)

 message = Format(0, "0") & Format(node(i).local_phase, "00") &
Format(node(i).local_step, "00") & Format(node(i).candidate_id, "00000") &
Format(node(i).candidate_pos, "00000")
 Call node(dist).add(message, time_step)

www.manaraa.com

126

 ' Print node(i).my_pos; "send "; message; "to"; dist
 mm = node(i).my_pos
 Write #1, time_step; " "; node(i).my_pos; "send "; message; "to"; dist
 msg = time_step & Space(10) & node(i).my_pos & Space(11 - Len(mm))
& "send" & Space(10) & message & Space(10) & "to" & Space(10) & dist
 List1.AddItem (msg)
 node(i).phase2done = True

 End If
 End If
 If node(i).local_phase = 3 Then
 node(i).leader_id = node(i).candidate_id
 node(i).leader_pos = node(i).candidate_pos
 node(i).local_step = node(i).local_step + 1
 If node(i).local_step = d + 1 Then

 GoTo 20
 End If
 If node(i).local_step = d + 2 Then

 Timer1.Enabled = False
 For j = 0 To N - 1
 node(j).local_phase = 0
 node(j).local_step = 0
 node(j).normal = True
 node(j).phase2done = False
 node(j).candidate_id = 0
 node(j).candidate_pos = 0
 Next j
 MsgBox ("END THE SIMULATION")
 Exit For
 End If
 dist = finddis(i, node(i).local_step)

 message = Format(1, "0") & Format(node(i).local_phase, "00") &
Format(node(i).local_step, "00") & Format(node(i).candidate_id, "00000") &
Format(node(i).candidate_pos, "00000")
 Call node(dist).add(message, time_step)
 ' Print node(i).my_pos; "send "; message; "to"; dist
 Write #1, time_step; " "; node(i).my_pos; "send "; message; "to"; dist
 mm = node(i).my_pos
 msg = time_step & Space(10) & node(i).my_pos & Space(11 - Len(mm))
& "send" & Space(10) & message & Space(10) & "to" & Space(10) & dist
 List1.AddItem (msg)

 End If

20: Next i

www.manaraa.com

127

 Close #1
 time_step = time_step + 110:
 If step = True Then Timer1.Enabled = False
End Sub

Private Sub leader_failure(x As Integer)
 Randomize
 Dim i As Integer, r%, message$, dist%, msg As String
 time_step = 1
 node(leader_pos).my_id = 0
 Open "D:\Documents and Settings\mohammed\Desktop\tt" For Append As #1
 For i = 1 To x
 r = N * Rnd()
 If node(r).normal = True Then
 'Print " process number: "; r; " detect the failure"
 node(r).normal = False
 node(r).local_phase = 1
 node(r).local_step = 1
 node(r).leader_id = -1
 node(r).leader_pos = -1
 node(r).candidate_id = node(r).my_id
 node(r).candidate_pos = node(r).my_pos
 dist = finddis(r, 1)
 message = Format(0, "0") & Format(node(r).local_phase, "00") &
Format(node(r).local_step, "00") & Format(node(r).candidate_id, "00000") &
Format(node(r).candidate_pos, "00000")
 'Print node(r).my_pos; "send "; message; "to"; dist
 Write #1, 0; " "; node(r).my_pos; "send "; message; "to"; dist
 msg = "0" & Space(10) & node(r).my_pos & Space(10) & "send" & Space(10) &
message & Space(10) & "to" & Space(10) & dist
 List1.AddItem (msg)
 Call node(dist).add(message, 0)
 Else
 i = i - 1
 End If
 Next i
 Close #1
 ltimesteps.Caption = time_step
End Sub

Private Sub Yello_Click(Index As Integer)
 Me.backcolor = vbYellow
End Sub

2- Vertices Class Code
Option Explicit

 Public my_id As Integer
 Public my_pos As Integer
 Public leader_pos As Integer
 Public leader_id As Integer
 Public candidate_pos As Integer

www.manaraa.com

128

 Public candidate_id As Integer
 Public normal As Boolean
 Public local_phase As Integer
 Public local_step As Integer
 Public bin As String
 Public phase2done As Boolean
 Public end_after_phase As Boolean
 Private Type rec
 message As String * 15
 time As Integer
End Type

 Private buffer(6) As rec
 Const buffer_size = 7
 Private buffer_head As Integer
 Private buffer_tail As Integer

 Public Function add(message As String, timer As Integer)
 number_of_message = number_of_message + 1
 Form1.Lnumberofmessage.Caption = number_of_message
 If Not isfull Then
 buffer(buffer_tail).message = message
 buffer(buffer_tail).time = timer
 buffer_tail = (buffer_tail + 1) Mod buffer_size
 End If

 End Function
 Public Sub delete()
 If Not isempty() Then buffer_head = (buffer_head + 1) Mod buffer_size

 End Sub
 Public Function isempty() As Boolean
 If buffer_head = buffer_tail Then
 isempty = True
 Else
 isempty = False
 End If
 End Function
 Public Function isfull() As Boolean
 If (buffer_tail + 1) Mod (buffer_size) = buffer_head Then
 isfull = True
 Else
 isfull = False
 End If
 End Function
 Public Function read_buffer() As String
 If Not isempty Then

 read_buffer = buffer(buffer_head).message
 delete
 End If

www.manaraa.com

129

 End Function
Public Function read_btime() As Integer
 If Not isempty Then
 read_btime = buffer(buffer_head).time
 End If
 End Function

 Public Sub show_buffer()
 Dim i%, bh%, bt As Integer
 bh = buffer_head
 bt = buffer_tail
 Do Until bh = bt
 Form1.List2.AddItem (buffer(bh).message)
 bh = (bh + 1) Mod buffer_size
Loop

 End Sub

3- Module Code

Public N As Integer
Public d As Integer
 Public step As Boolean
Public leader_pos%, time_step As Integer, number_of_message, ppp As Boolean

Public Function finddis(ByVal node As Integer, ByVal arc As Integer) As Integer
 Dim x() As Integer, i%, ss%, diameter%
 diameter = (Log(N) / Log(2))
 ReDim x(1 To diameter)
 For i = 1 To diameter

 x(i) = node Mod 2
 node = node \ 2
 Next i
 x(arc) = x(arc) Xor 1

 For i = 1 To diameter
 ss = ss + 2 ^ (i - 1) * x(i)
 Next
 finddis = ss
End Function

www.manaraa.com

131

Appendix 2

The messages for election algorithm in hypercube with N = 2048 when 100

nodes detect leader failure. Because of large number of messages step 10

messages list down in this appendix.

 Step Source Message Destination

10 1504 "001110204601360" 480

10 1505 "001110203401889" 481

10 1506 "001110201701270" 482

10 1507 "001110204001803" 483

10 1508 "001110203001604" 484

10 1509 "001110204301621" 485

10 1510 "001110201701270" 486

10 1511 "001110202701731" 487

10 1512 "001110204601360" 488

10 1513 "001110203401889" 489

10 1514 "001110201701270" 490

10 1515 "001110204001803" 491

10 1516 "001110201801820" 492

10 1517 "001110204301621" 493

10 1518 "001110201701270" 494

10 1519 "001110202701731" 495

10 1520 "001110204601360" 496

10 1521 "001110203401889" 497

10 1522 "001110201701270" 498

10 1523 "001110204001803" 499

10 1524 "001110201801820" 500

10 1525 "001110204301621" 501

10 1526 "001110201701270" 502

10 1527 "001110202701731" 503

10 1528 "001110204601360" 504

10 1529 "001110203401889" 505

10 1530 "001110201701270" 506

10 1531 "001110204001803" 507

10 1532 "001110201801820" 508

10 1533 "001110204301621" 509

10 1534 "001110201701270" 510

10 1535 "001110202701731" 511

10 1536 "001110204601360" 512

10 1537 "001110203401889" 513

10 1538 "001110201701270" 514

10 1539 "001110204001803" 515

10 1540 "001110203001604" 516

10 1541 "001110204301621" 517

10 1542 "001110201701270" 518

10 1543 "001110202701731" 519

10 1544 "001110204601360" 520

10 1545 "001110203401889" 521

10 1546 "001110201701270" 522

10 1547 "001110204001803" 523

10 1548 "001110201801820" 524

www.manaraa.com

131

10 1549 "001110204301621" 525

10 1550 "001110201701270" 526

10 1551 "001110202701731" 527

10 1552 "001110204601360" 528

10 1553 "001110203401889" 529

10 1554 "001110201701270" 530

10 1555 "001110204001803" 531

10 1556 "001110203502004" 532

10 1557 "001110204301621" 533

10 1558 "001110201701270" 534

10 1559 "001110202701731" 535

10 1560 "001110204601360" 536

10 1561 "001110203401889" 537

10 1562 "001110201701270" 538

10 1563 "001110204001803" 539

10 1564 "001110201801820" 540

10 1565 "001110204301621" 541

10 1566 "001110201701270" 542

10 1567 "001110202701731" 543

10 1568 "001110204601360" 544

10 1569 "001110203401889" 545

10 1570 "001110201701270" 546

10 1571 "001110204001803" 547

10 1572 "001110203001604" 548

10 1573 "001110204301621" 549

10 1574 "001110201701270" 550

10 1575 "001110202701731" 551

10 1576 "001110204601360" 552

10 1577 "001110203401889" 553

10 1578 "001110201701270" 554

10 1579 "001110204001803" 555

10 1580 "001110201801820" 556

10 1581 "001110204301621" 557

10 1582 "001110201701270" 558

10 1583 "001110202701731" 559

10 1584 "001110204601360" 560

10 1585 "001110203401889" 561

10 1586 "001110201701270" 562

10 1587 "001110204001803" 563

10 1588 "001110201801820" 564

10 1589 "001110204301621" 565

10 1590 "001110201701270" 566

10 1591 "001110202701731" 567

10 1592 "001110204601360" 568

10 1593 "001110203401889" 569

10 1594 "001110201701270" 570

10 1595 "001110204001803" 571

10 1596 "001110201801820" 572

10 1597 "001110204301621" 573

10 1598 "001110201701270" 574

10 1599 "001110202701731" 575

10 1600 "001110204601360" 576

10 1601 "001110203401889" 577

10 1602 "001110201701270" 578

10 1603 "001110204001803" 579

10 1604 "001110203001604" 580

10 1605 "001110204301621" 581

10 1661 "001110204301621" 637

10 1662 "001110201701270" 638

10 1663 "001110202701731" 639

10 1664 "001110204601360" 640

10 1665 "001110203401889" 641

10 1666 "001110201701270" 642

10 1667 "001110204001803" 643

10 1668 "001110203001604" 644

10 1669 "001110204301621" 645

10 1670 "001110201701270" 646

10 1671 "001110202701731" 647

10 1672 "001110204601360" 648

10 1673 "001110203401889" 649

10 1674 "001110201701270" 650

10 1675 "001110204001803" 651

10 1676 "001110201801820" 652

10 1677 "001110204301621" 653

10 1678 "001110201701270" 654

10 1679 "001110202701731" 655

10 1680 "001110204601360" 656

10 1681 "001110203401889" 657

10 1682 "001110201701270" 658

10 1683 "001110204001803" 659

10 1684 "001110203502004" 660

10 1685 "001110204301621" 661

10 1686 "001110201701270" 662

10 1687 "001110202701731" 663

10 1688 "001110204601360" 664

10 1689 "001110203401889" 665

10 1690 "001110201701270" 666

10 1691 "001110204001803" 667

10 1692 "001110201801820" 668

10 1693 "001110204301621" 669

10 1694 "001110201701270" 670

10 1695 "001110202701731" 671

10 1696 "001110204601360" 672

10 1697 "001110203401889" 673

10 1698 "001110201701270" 674

10 1699 "001110204001803" 675

10 1700 "001110203001604" 676

10 1701 "001110204301621" 677

10 1702 "001110201701270" 678

10 1703 "001110202701731" 679

10 1704 "001110204601360" 680

10 1705 "001110203401889" 681

10 1706 "001110201701270" 682

10 1707 "001110204001803" 683

10 1708 "001110201801820" 684

10 1709 "001110204301621" 685

10 1710 "001110201701270" 686

10 1711 "001110202701731" 687

10 1712 "001110204601360" 688

10 1713 "001110203401889" 689

10 1714 "001110201701270" 690

10 1715 "001110204001803" 691

10 1716 "001110201801820" 692

10 1717 "001110204301621" 693

www.manaraa.com

132

10 1606 "001110201701270" 582

10 1607 "001110202701731" 583

10 1608 "001110204601360" 584

10 1609 "001110203401889" 585

10 1610 "001110201701270" 586

10 1611 "001110204001803" 587

10 1612 "001110201801820" 588

10 1613 "001110204301621" 589

10 1614 "001110201701270" 590

10 1615 "001110202701731" 591

10 1616 "001110204601360" 592

10 1617 "001110203401889" 593

10 1618 "001110201701270" 594

10 1619 "001110204001803" 595

10 1620 "001110203502004" 596

10 1621 "001110204301621" 597

10 1622 "001110201701270" 598

10 1623 "001110202701731" 599

10 1624 "001110204601360" 600

10 1625 "001110203401889" 601

10 1626 "001110201701270" 602

10 1627 "001110204001803" 603

10 1628 "001110201801820" 604

10 1629 "001110204301621" 605

10 1630 "001110201701270" 606

10 1631 "001110202701731" 607

10 1632 "001110204601360" 608

10 1633 "001110203401889" 609

10 1634 "001110201701270" 610

10 1635 "001110204001803" 611

10 1636 "001110203001604" 612

10 1637 "001110204301621" 613

10 1638 "001110201701270" 614

10 1639 "001110202701731" 615

10 1640 "001110204601360" 616

10 1641 "001110203401889" 617

10 1642 "001110201701270" 618

10 1643 "001110204001803" 619

10 1644 "001110201801820" 620

10 1645 "001110204301621" 621

10 1646 "001110201701270" 622

10 1647 "001110202701731" 623

10 1648 "001110204601360" 624

10 1649 "001110203401889" 625

10 1650 "001110201701270" 626

10 1651 "001110204001803" 627

10 1652 "001110201801820" 628

10 1653 "001110204301621" 629

10 1654 "001110201701270" 630

10 1655 "001110202701731" 631

10 1656 "001110204601360" 632

10 1657 "001110203401889" 633

10 1658 "001110201701270" 634

10 1659 "001110204001803" 635

10 1660 "001110201801820" 636

10 1718 "001110201701270" 694

10 1719 "001110202701731" 695

10 1720 "001110204601360" 696

10 1721 "001110203401889" 697

10 1722 "001110201701270" 698

10 1723 "001110204001803" 699

10 1724 "001110201801820" 700

10 1725 "001110204301621" 701

10 1726 "001110201701270" 702

10 1727 "001110202701731" 703

10 1728 "001110204601360" 704

10 1729 "001110203401889" 705

10 1730 "001110201701270" 706

10 1731 "001110204001803" 707

10 1732 "001110203001604" 708

10 1733 "001110204301621" 709

10 1734 "001110201701270" 710

10 1735 "001110202701731" 711

10 1736 "001110204601360" 712

10 1737 "001110203401889" 713

10 1738 "001110201701270" 714

10 1739 "001110204001803" 715

10 1740 "001110201801820" 716

10 1741 "001110204301621" 717

10 1742 "001110201701270" 718

10 1743 "001110202701731" 719

10 1744 "001110204601360" 720

10 1745 "001110203401889" 721

10 1746 "001110201701270" 722

10 1747 "001110204001803" 723

10 1748 "001110203502004" 724

10 1749 "001110204301621" 725

10 1750 "001110201701270" 726

10 1751 "001110202701731" 727

10 1752 "001110204601360" 728

10 1753 "001110203401889" 729

10 1754 "001110201701270" 730

10 1755 "001110204001803" 731

10 1756 "001110201801820" 732

10 1757 "001110204301621" 733

10 1758 "001110201701270" 734

10 1759 "001110202701731" 735

10 1760 "001110204601360" 736

10 1761 "001110203401889" 737

10 1762 "001110201701270" 738

10 1763 "001110204001803" 739

10 1764 "001110203001604" 740

10 1765 "001110204301621" 741

10 1766 "001110201701270" 742

10 1767 "001110202701731" 743

10 1768 "001110204601360" 744

10 1769 "001110203401889" 745

10 1770 "001110201701270" 746

10 1771 "001110204001803" 747

10 1772 "001110201801820" 748

10 1773 "001110204301621" 749

10 1774 "001110201701270" 750

www.manaraa.com

133

Appendix 3:
Flowcharts for the proposed
algorithms

10 1775 "001110202701731" 751

10 1776 "001110204601360" 752

10 1777 "001110203401889" 753

10 1778 "001110201701270" 754

10 1779 "001110204001803" 755

10 1780 "001110201801820" 756

10 1781 "001110204301621" 757

10 1782 "001110201701270" 758

10 1783 "001110202701731" 759

10 1784 "001110204601360" 760

10 1785 "001110203401889" 761

10 1786 "001110201701270" 762

10 1787 "001110204001803" 763

10 1788 "001110201801820" 764

10 1789 "001110204301621" 765

10 1790 "001110201701270" 766

10 1791 "001110202701731" 767

10 1792 "001110204601360" 768

10 1793 "001110203401889" 769

10 1794 "001110201701270" 770

10 1795 "001110204001803" 771

10 1796 "001110203001604" 772

10 1797 "001110204301621" 773

10 1798 "001110201701270" 774

10 1799 "001110202701731" 775

10 1800 "001110204601360" 776

10 1801 "001110203401889" 777

10 1802 "001110201701270" 778

10 1803 "001110204001803" 779

10 1804 "001110201801820" 780

10 1805 "001110204301621" 781

10 1806 "001110201701270" 782

10 1807 "001110202701731" 783

10 1808 "001110204601360" 784

10 1809 "001110203401889" 785

10 1810 "001110201701270" 786

10 1811 "001110204001803" 787

10 1812 "001110203502004" 788

10 1813 "001110204301621" 789

10 1814 "001110201701270" 790

10 1815 "001110202701731" 791

10 1816 "001110204601360" 792

10 1817 "001110203401889" 793

10 1818 "001110201701270" 794

10 1819 "001110204001803" 795

10 1820 "001110201801820" 796

10 1821 "001110204301621" 797

10 1822 "001110201701270" 798

10 1823 "001110202701731" 799

10 1824 "001110204601360" 800

10 1825 "001110203401889" 801

10 1826 "001110201701270" 802

10 1827 "001110204001803" 803

10 1828 "001110203001604" 804

10 1829 "001110204301621" 805

10 1830 "001110201701270" 806

10 1831 "001110202701731" 807

www.manaraa.com

134

10 1832 "001110204601360" 808

10 1833 "001110203401889" 809

10 1834 "001110201701270" 810

10 1835 "001110204001803" 811

10 1836 "001110201801820" 812

10 1837 "001110204301621" 813

10 1838 "001110201701270" 814

10 1839 "001110202701731" 815

10 1840 "001110204601360" 816

10 1841 "001110203401889" 817

10 1842 "001110201701270" 818

10 1843 "001110204001803" 819

10 1844 "001110201801820" 820

10 1845 "001110204301621" 821

10 1846 "001110201701270" 822

10 1847 "001110202701731" 823

10 1848 "001110204601360" 824

10 1849 "001110203401889" 825

10 1850 "001110201701270" 826

10 1851 "001110204001803" 827

10 1852 "001110201801820" 828

10 1853 "001110204301621" 829

10 1854 "001110201701270" 830

10 1855 "001110202701731" 831

10 1856 "001110204601360" 832

10 1857 "001110203401889" 833

10 1858 "001110201701270" 834

10 1859 "001110204001803" 835

10 1860 "001110203001604" 836

10 1861 "001110204301621" 837

10 1862 "001110201701270" 838

10 1863 "001110202701731" 839

10 1864 "001110204601360" 840

10 1865 "001110203401889" 841

10 1866 "001110201701270" 842

10 1867 "001110204001803" 843

10 1868 "001110201801820" 844

10 1869 "001110204301621" 845

10 1870 "001110201701270" 846

10 1871 "001110202701731" 847

10 1872 "001110204601360" 848

10 1873 "001110203401889" 849

10 1874 "001110201701270" 850

10 1875 "001110204001803" 851

10 1876 "001110203502004" 852

10 1877 "001110204301621" 853

10 1878 "001110201701270" 854

10 1879 "001110202701731" 855

10 1880 "001110204601360" 856

10 1881 "001110203401889" 857

10 1882 "001110201701270" 858

10 1883 "001110204001803" 859

10 1884 "001110201801820" 860

10 1885 "001110204301621" 861

10 1886 "001110201701270" 862

10 1887 "001110202701731" 863

10 1888 "001110204601360" 864

www.manaraa.com

135

10 1889 "001110203401889" 865

10 1890 "001110201701270" 866

10 1891 "001110204001803" 867

10 1892 "001110203001604" 868

10 1893 "001110204301621" 869

10 1894 "001110201701270" 870

10 1895 "001110202701731" 871

10 1896 "001110204601360" 872

10 1897 "001110203401889" 873

10 1898 "001110201701270" 874

10 1899 "001110204001803" 875

10 1900 "001110201801820" 876

10 1901 "001110204301621" 877

10 1902 "001110201701270" 878

10 1903 "001110202701731" 879

10 1904 "001110204601360" 880

10 1905 "001110203401889" 881

10 1906 "001110201701270" 882

10 1907 "001110204001803" 883

10 1908 "001110201801820" 884

10 1909 "001110204301621" 885

10 1910 "001110201701270" 886

10 1911 "001110202701731" 887

10 1912 "001110204601360" 888

10 1913 "001110203401889" 889

10 1914 "001110201701270" 890

10 1915 "001110204001803" 891

10 1916 "001110201801820" 892

10 1917 "001110204301621" 893

10 1918 "001110201701270" 894

10 1919 "001110202701731" 895

10 1920 "001110204601360" 896

10 1921 "001110203401889" 897

10 1922 "001110201701270" 898

10 1923 "001110204001803" 899

10 1924 "001110203001604" 900

10 1925 "001110204301621" 901

10 1926 "001110201701270" 902

10 1927 "001110202701731" 903

10 1928 "001110204601360" 904

10 1929 "001110203401889" 905

10 1930 "001110201701270" 906

10 1931 "001110204001803" 907

10 1932 "001110201801820" 908

10 1933 "001110204301621" 909

10 1934 "001110201701270" 910

10 1935 "001110202701731" 911

10 1936 "001110204601360" 912

10 1937 "001110203401889" 913

10 1938 "001110201701270" 914

10 1939 "001110204001803" 915

10 1940 "001110203502004" 916

10 1941 "001110204301621" 917

10 1942 "001110201701270" 918

10 1943 "001110202701731" 919

10 1944 "001110204601360" 920

10 1945 "001110203401889" 921

www.manaraa.com

136

10 1946 "001110201701270" 922

10 1947 "001110204001803" 923

10 1948 "001110201801820" 924

10 1949 "001110204301621" 925

10 1950 "001110201701270" 926

10 1951 "001110202701731" 927

10 1952 "001110204601360" 928

10 1953 "001110203401889" 929

10 1954 "001110201701270" 930

10 1955 "001110204001803" 931

10 1956 "001110203001604" 932

10 1957 "001110204301621" 933

10 1958 "001110201701270" 934

10 1959 "001110202701731" 935

10 1960 "001110204601360" 936

10 1961 "001110203401889" 937

10 1962 "001110201701270" 938

10 1963 "001110204001803" 939

10 1964 "001110201801820" 940

10 1965 "001110204301621" 941

10 1966 "001110201701270" 942

10 1967 "001110202701731" 943

10 1968 "001110204601360" 944

10 1969 "001110203401889" 945

10 1970 "001110201701270" 946

10 1971 "001110204001803" 947

10 1972 "001110201801820" 948

10 1973 "001110204301621" 949

10 1974 "001110201701270" 950

10 1975 "001110202701731" 951

10 1976 "001110204601360" 952

10 1977 "001110203401889" 953

10 1978 "001110201701270" 954

10 1979 "001110204001803" 955

10 1980 "001110201801820" 956

10 1981 "001110204301621" 957

10 1982 "001110201701270" 958

10 1983 "001110202701731" 959

10 1984 "001110204601360" 960

10 1985 "001110203401889" 961

10 1986 "001110201701270" 962

10 1987 "001110204001803" 963

10 1988 "001110203001604" 964

10 1989 "001110204301621" 965

10 1990 "001110201701270" 966

10 1991 "001110202701731" 967

10 1992 "001110204601360" 968

10 1993 "001110203401889" 969

10 1994 "001110201701270" 970

10 1995 "001110204001803" 971

10 1996 "001110201801820" 972

www.manaraa.com

137

www.manaraa.com

138

www.manaraa.com

139

